Eigenvalue localization for complex matrices

Authors

  • Óscar Luis Rojo Jeraldo Universidad Católica del Norte.
  • Ricardo Lorenzo Soto Montero Universidad Católica del Norte.
  • Héctor Rojo J. Universidad de Antofagasta.
  • Tin- Yau Tam Auburn University.

DOI:

https://doi.org/10.22199/S07160917.1992.0001.00003

Keywords:

eigenvalues

Abstract

In this paper, we prove that all the eigenvalues ?i  of a complex matrix A of order n lie in a disk with center at trA/n and radius This radius can be bounded without knowing the eigenvalues of A.

Author Biographies

Óscar Luis Rojo Jeraldo, Universidad Católica del Norte.

Departamento de Matemáticas.

Ricardo Lorenzo Soto Montero, Universidad Católica del Norte.

Departamento de Matemáticas.

Héctor Rojo J., Universidad de Antofagasta.

Departamento de Matemáticas.

Tin- Yau Tam, Auburn University.

Department of Algebra, Combinatorics and Analysis.

References

[ 1] Eberlein, P.J.: On Measure of Non-normality for Matrices. American Mathematical Monthly, 72, pp 995-996, 1965.

[ 2] Rojo, O. and Soto, R .. New Conditions for the Additive Inverse Eigenvalue Problem for Matrices. Computers and Mathematics with Applications. To appear.

[ 3] Tarazaga, P.: Eigenvalue Estimate for Symmetric Matrices. Linear Algebra and Its Applications,135, pp 171-179, 1990.

Published

2018-04-02

How to Cite

[1]
Óscar L. Rojo Jeraldo, R. L. Soto Montero, H. Rojo J., and T.-. Y. Tam, “Eigenvalue localization for complex matrices”, Proyecciones (Antofagasta, On line), vol. 11, no. 1, pp. 11-19, Apr. 2018.

Issue

Section

Artículos

Most read articles by the same author(s)

1 2 3 > >>