On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
DOI:
https://doi.org/10.22199/issn.0717-6279-5963Keywords:
Distance antimagic graphs, local distance antimagic chromatic number, star and complete graphsAbstract
Let $G$ be a graph on $p$ vertices and $q$ edges with no isolated vertices. A bijection $f: V\rightarrow \{1,2,3,...,p\}$ is called local distance antimagic labeling, if for any two adjacent vertices $u$ and $v$, we have $w(u) \neq w(v)$, where $w(u)=\sum_{x\epsilon N(u)} {f(x)}$. The local distance antimagic chromatic number $\chi_{lda}(G)$ is defined to be the minimum number of colors taken over all colorings of $G$ induced by local distance antimagic labelings of $G$. In this paper, we obtained the necessary and sufficient condition for the local distance antimagic chromatic number of some disjoint union of graphs with 1-regular graphs equal to the number of distinct neighbors of its pendant vertices. We also gave a correct result in [Local Distance Antimagic Vertex Coloring of Graphs, https://arxiv.org/abs/2106.01833v1(2021)].%magic Vertex Coloring of Graphs, https://arxiv.org/abs/2106.01833v1
Downloads
References
bibitem{SFK}S. Arumugam, D. Froncek, and N. Kamatchi, Distance magic graphs—a survey, {it J. Indones. Math. Soc.,} Special Edition (2011), 1–9.
bibitem{SK} Arumugam, S, Kamatchi, N., On $(a, d)$-distance antimagic graphs, {it Australas. J. Combin.} (2012) 54, 279-287.
bibitem{SA} S. Arumugam, K. Premalatha, Martin Bacv{a} and Andrea Semaniv{c}ov'{a}-Fecv{n}ovv{c}'{i}kov'{a}, Local Antimagic Vertex Coloring of a Graph, {it Graphs and Combinatorics}, 33(2017), pp.275--285.
bibitem{baca}M. Ba$check{c}$a and M. Miller, Super edge-antimagic graphs, A wealth of problems and solutions, Brown walker press, Boca Raton
(2008).
bibitem{JB} J. Bensmail, M. Senhaji and K. Szabo Lyngsie, On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture, {it Discrete Math. Theor. Comput.Sci.}, 19(1) (2017), 22.
bibitem{cl} G. Chartrand and L. Lesniak, {it Graphs and Digraphs}, Chapman and Hall, CRC, 4$^{th}$ edition, 2005.
.
bibitem{DDY} T Divya and S Devi Yamini, Local Distance Antimagic Vertex Coloring of Graphs, https://arxiv.org/abs/2106.01833v1(2021).
bibitem{JAG} J. A. Gallian, A dynamic survey of graph labeling, {it Electron. J. Combin.}, (2021), #DS6.
bibitem{HR} N. Hartsfield, G. Ringel, {it Pearls in graph theory}, { it Academic Press, INC.}, Boston (1994).
bibitem{NHR} J. Haslegrave, Proof of a local antimagic conjecture, {it Discrete Math. Theor. Comput.Sci.}, 20(1) (2018), #18.
bibitem{KA} N. Kamatchi and S. Arumugam, Distance antimagic graphs,{it J. Combin. Math. Combin. Comput.} 84 (2013) 61–67.
bibitem{LNS} G.C. Lau, H.K. Ng and W.C. Shiu, Affirmative solutions on local antimagic chromatic number, {it Graphs Combin.}, {bf 36} (2020), 1337--1354.
bibitem{LSN} G.C. Lau, W.C. Shiu and H.K. Ng, On local antimagic chromatic number of cycle-related join graphs, {it Discuss. Math. Graph Theory}, {bf 4(1)} (2021), 133--152, DOI:10.7151/dmgt.2177.
bibitem{nall} Nalliah M, {it Antimagic labeling of Graphs and Digraphs}, Ph.D Thesis, Kalasalingam University, Tamil Nadu, India,(2013).
bibitem{PN} V. Priyadharshini and M. Nalliah, Local Distance Antimagic Chromatic number for the union of Complete bipartite Graphs, {it Tamkang Journal of Mathematics}, Accepted,(2022)
bibitem{SSH} S. Shaebani, On Local antimagic Chromatic Number of Graphs, {it Journal of Algebraic Systems}, Vol. 7, No. 2, (2020), pp.245-256.
bibitem{nalla} R. Shankar and M. Nalliah, Local Vertex Antimagic Chromatic Number of Some Wheel Related Graphs, {it Proyecciones J. Math.,},41(1),(2022),343-358.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nalliah M
This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.