On local edge antimagic chromatic number of graphs

Authors

  • S. Rajkumar Vellore Institute of Technology.
  • M. Nalliah Vellore Institute of Technology.

DOI:

https://doi.org/10.22199/issn.0717-6279-5339

Keywords:

local edge antimagic labeling, local edge antimagic chromatic number, friendship graph, wheel graph, fan graph, Helm graph, Flower graph

Abstract

Let G=(V,E) be a graph of order p and size q having no isolated vertices. A bijection f from V to {1,2,3,...,p} is called a local edge antimagic labeling if  for  any two adjacent edges e=uv and e'=vw of G, we have w(e) is not equal to w (e'), where the edge weight w(e=uv)=f(u)+f(v) and w(e')=f(v)+f(w). A graph G is local edge antimagic if G has a local edge antimagic labeling. The local edge antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local edge antimagic labelings of G. In this paper, we determine the local edge antimagic chromatic number for a friendship graph, wheel graph, fan graph, helm graph, flower graph, and closed helm.

Downloads

Download data is not yet available.

Author Biographies

  • S. Rajkumar, Vellore Institute of Technology.

    Department of Mathematics, School of Advanced Sciences.

  • M. Nalliah, Vellore Institute of Technology.

    Department of Mathematics, School of Advanced Sciences.

References

G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th ed. New York: Chapman and Hall/CRC, 2005.

N. Hartsfield and G. Ringel, Pearls in graph theory. Boston: Academic Press, 1994.

S. Arumugam, K. Premalatha, M. Bača, and A. Semaničová-Feňovčíková, “Local antimagic vertex coloring of a graph”, Graphs and Combinatorics, vol. 33, no. 2, pp. 275–285, 2017. https://doi.org/10.1007/s00373-017-1758-7

I. H. Agustin, M. Hasan, Dafik, R. Alfarisi, and R. M. Prihandini, “Local edge antimagic coloring of graphs”, Far East Journal of Mathematical Sciences, vol. 102, no. 9, pp. 1925–1941, 2017. https://doi.org/10.17654/ms102091925

J. A. Gallian, “A dynamic survey of graph labeling”, The Electronic Journal of Combinatorics, # DS6, 2020

J. Haslegrave, “Proof of a local antimagic conjecture”, Discrete mathematics & theoretical computer science, vol. 20, no. 1, 2018.

Y. Cheng, “A new class of antimagic cartesian product graphs”, Discrete Mathematics, vol. 308, no. 24, pp. 6441–6448, 2008. https://doi.org/10.1016/j.disc.2007.12.032

T.-M. Wang and G.-H. Zhang, “On antimagic labeling of odd regular graphs”, in Combinatorial Algorithms, S. Arumugam and B. Smyth, Eds. Berlin: Springer, 2012, pp. 162-168.

M. Bača and M. Miller, Super Edge Antimagic Graphs A Wealth of problems and Some Solutions. Baco Raton: Brown Walker Press, 2008.

R. Shankar and M. Nalliah, “Local vertex antimagic chromatic number of some wheel related graphs”, Proyecciones (Antofagasta), vol. 41, no. 1, pp. 319–334, 2022. https://doi.org/10.22199/issn.0717-6279-44420

Downloads

Published

2022-11-07

Issue

Section

Artículos

How to Cite

[1]
“On local edge antimagic chromatic number of graphs”, Proyecciones (Antofagasta, On line), vol. 41, no. 6, pp. 1397–1412, Nov. 2022, doi: 10.22199/issn.0717-6279-5339.