Total graph of a commutative semiring with respect to singular ideal
DOI:
https://doi.org/10.22199/issn.071762792020030032Keywords:
Semiring, Total graph, Singular ideal, Induced subgraphAbstract
Let S be a commutative semiring with unity. The singular ideal Z(S) of S is defined as Z(S) = {s ∈ S  sK = 0 for some essential ideal K of S}. In this paper, we introduce the notion of total graph of a commutative semiring with respect to the singular ideal. We define this graph as the undirected graph T(Γ(S)) with all elements of S as vertices and any two distinct vertices x and y are adjacent if and only if x + y ∈ Z(S). We discuss various characteristics of this total graph and also characterize some important properties of certain induced subgraphs of this total graph.
References
A. Abbasi and S. Habibi, “The total graph of a commutative ring with respect to proper ideals”, Journal of the Korean Mathematical Society, vol. 49, no. 1, pp. 85–98, Jan. 2012, doi: 10.4134/JKMS.2012.49.1.085
S. Akbari and A. Mohammadian, “On the zerodivisor graph of a commutative ring”, Journal of algebra, vol. 274, no. 2, pp. 847–855, Apr. 2004, doi: 10.1016/S00218693(03)004356
D. F. Anderson and M. Naseer, “Beck′s coloring of a commutative ring”, Journal of algebra, vol. 159, no. 2, pp. 500–514, Aug. 1993, doi: 10.1006/jabr.1993.1171
D. F. Anderson, “On the diameter and girth of a zerodivisor graph, II”, Houston journal of mathematics, vol. 34, no. 2, pp. 361371, 2008.
D. F. Anderson and A. Badawi, “The generalized total graph of a commutative ring”, Journal of algebra and its applications, vol. 12, no. 05, pp. 125–212, May 2013, doi: 10.1142/S021949881250212X
D. F. Anderson and A. Badawi, “The total graph of a commutative ring”, Journal of algebra, vol. 320, no. 7, pp. 2706–2719, Oct. 2008, doi: 10.1016/j.jalgebra.2008.06.028
D. F. Anderson and P. S. Livingston, “The zerodivisor graph of a commutative ring”, Journal of algebra, vol. 217, no. 2, pp. 434–447, Jul. 1999, doi: 10.1006/jabr.1998.7840
D. F. Anderson and S. Mulay, “On the diameter and girth of a zerodivisor graph”, Journal of pure and applied algebra, vol. 210, no. 2, pp. 543–550, Aug. 2007, doi: 10.1016/j.jpaa.2006.10.007
T. Asir and T. Tamizh Chelvam, “Genus of total graphs of commutative rings: a survey”, Electronic notes in discrete mathematics, vol. 63, pp. 59–68, Dec. 2017, doi: 10.1016/j.endm.2017.10.062
T. Asir and T. T. Chelvam, “On the total graph and its complement of a commutative ring”, Communications in algebra, vol. 41, no. 10, pp. 3820–3835, Oct. 2013, doi: 10.1080/00927872.2012.678956
S. E. Atani, “An ideal based zerodivisor graph of a commutative semiring”, Glasnik matematicki, vol. 44, no. 1, pp. 141–153, May 2009, doi: 10.3336/gm.44.1.07
S. E. Atani, “The zerodivisor graph with respect to ideals of a commutative semiring”, Glasnik matematicki, vol. 43, no. 2, pp. 309–320, Nov. 2008, doi: 10.3336/gm.43.2.06
S. E. Atani and S. Habibi, “The total torsion element graph of a module over a commutative ring”, Analele Universitatii "Ovidius" Constanta  Seria Matematica, vol. 19, no. 1, pp. 2334, 2011. [On line]. Available: https://bit.ly/2z5V7kM
S. E. Atani, S. D. P. Hesari, and M. Khoramdel, “Total graph of a commutative semiring with respect to identitysummand elements”, Journal of the Korean Mathematical Society, vol. 51, no. 3, pp. 593–607, May 2014, doi: 10.4134/JKMS.2014.51.3.593
S. E. Atani, S. D. P. Hesari, and M. Khoramdel, “Total IdentitySummand Graph Of A Commutative Semiring With Respect To A CoIdeal”, Journal of the Korean Mathematical Society, vol. 52, no. 1, pp. 159–176, Jan. 2015, doi: 10.4134/JKMS.2015.52.1.159
S. E. Atani and F. E. K. Saraei, “The total graph of a commutative semiring”, Analele Universitatii "Ovidius" Constanta  Seria Matematica, vol. 21, no. 2, pp. 21–33, Jun. 2013, doi: 10.2478/auom20130021 [17] S. E. Atani and Z. E. Sarvandi, "The total graph of a commutative semiring with respect to proper ideals”, Journal of algebra and related topics, vol. 3, no. 2, pp. 2741, 2015. [On line]. Available: https://bit.ly/3bM6X0E
I. Beck, “Coloring of commutative rings”, Journal of algebra, vol. 116, no. 1, pp. 208–226, Jul. 1988, doi: 10.1016/00218693(88)902025
B. Bollobás, Graph theory an introductory course. New York, NY: Springer, 1979, doi: 10.1007/9781461299677
J. S. Golan, Semirings and their applications. Dordrecht: Springer, 1999, doi: 10.1007/9789401593335
J. Goswami, K. K. Rajkhowa, and H. K. Saikia, “Total graph of a module with respect to singular submodule”, Arab journal of mathematical sciences, vol. 22, pp. 242249, 2016. [On line]. Available: https://bit.ly/3gbI5mu
M. H. Shekarriz, M. H. S. Haghighi, and H. Sharif, “On the total graph of a finite commutative ring”, Communications in algebra, vol. 40, no. 8, pp. 2798–2807, Aug. 2012, doi: 10.1080/00927872.2011.585680
Y. Talebi and A. Darzi, “The generalized total graph of a commutative semiring”, Ricerche di matematica, vol. 66, no. 2, pp. 579–589, Feb. 2017, doi: 10.1007/s1158701703214
H. S. Vandiver, “Note on a simple type of algebra in which the cancellation law of addition does not hold”, Bulletin of the American Mathematical Society, vol. 40, no. 12, pp. 914–921, Dec. 1934, doi: 10.1090/S000299041934060038
Published
How to Cite
Issue
Section
Copyright (c) 2020 Nabanita Goswami, Helen K. Saikia
This work is licensed under a Creative Commons Attribution 4.0 International License.

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.