About Decay Of Solution Of The Wave Equation With Dissipation
DOI:
https://doi.org/10.4067/S0716-09172007000100003Abstract
In this work, we consider the problem of existence of global solutions for a scalar wave equation with dissipation. We also study the asymptotic behaviour in time of the solutions. The method used here is based in nonlinear techniques. Key words: wave equation, evolution model, decay of solution, asymptotic behaviour.
Downloads
Download data is not yet available.
References
[1] F. Conrad and B. Rao - Decay of solutions of wave equations in a star-shaped domain with nonlinear boundary feedback. Asympt. Anal. 7, pp. 159—177, (1993).
[2] L. Cortés-Vega.- A note on resonant frequencies for a system of elastic wave equations, Int. J. Math. Math. Sci. 64, pp. 3485—3498, (2004).
[3] L. Cortés-Vega and Y. Santiago-Ayala, Decaimiento de la ecuación de onda con disipación. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol IX, Nro. 1, pp. 39—62, (2006).
[4] L. Hörmander - Linear Partial Differential Operators, Springer-Verlag, New York, 116, (1976).
[5] M. Ikawa - Mixed problems for hyperbolic equations of second order. J. Math. Soc. Japan 20, pp. 580—608, (1968).
[6] S. Kesavan - Topics in Functional Analysis and applications. John Wiley & Sons, (1989).
[7] J. Lagnese, Deacay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations 50, pp. 163—182, (1983).
[8] J. Lagnese and J. L. Lions, Modelling Analysis and Control of thin
Plates, Masson, Paris, (1989).
[9] I. Lasiecka and R. Triggiani, Control Problems for Systems Described by Partial Differential Equations and Applications, Springer Verlag Lect. Not., 97 (1987).
[10] I. Lasiecka and G. Avalos, Uniform decay rates of solutions to a structural acoustic model with nonlinear dissipation, Appl. Math Comp. Sci, 8, No. 2, pp. 101—127, (1998).
[11] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diff. Int. Eq, 6, pp. 507—533, (1993).
[12] I. Lasiecka, Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary, J. Diffetential Equations, 79, pp. 340—381, (1989).
[13] V. Komornik- Exact controllability and stabilization. John Wiley & Sons, (1994).
[14] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69, pp. 163-182, (1990).
[15] P. Martinez. - Decay of solutions of the wave equation with a local highly degenerate dissipation. Asymptotic Analysis 19, pp. 1—17, (1999).
[16] M. Nakao - Decay of solutions of the wave equation with a local degenerate dissipation. Israel J. of Maths 95, pp. 25—42, (1996).
[17] A. Pazy - Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, (1983).
[18] Y. Santiago A. - Una aplicación del Lema de Nakao. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM, Nro. 2, pp. 23—36, (2006).
[19] Y. Santiago A. - Decaimiento exponencial de la solución débil de una ecuación de onda no lineal. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol VIII Nro. 2, pp. 29—43, (2005).
[20] Y. Santiago A. and J. Rivera - Global existence and exponential decay to the wave equation with localized frictional damping. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol V. Nro. 2, pp. 1—19, (2002).
[21] D. Tataru, Boundary controllability for conservative PDEs, Appl. Math. Optim. 3, pp. 257—295, (1995).
[22] E. Zuazua - Exponential decay for the semi-linear wave equation with locally distributed damping. Comm. Partial Differential Equations. 15, pp. 205—235, (1990).
[2] L. Cortés-Vega.- A note on resonant frequencies for a system of elastic wave equations, Int. J. Math. Math. Sci. 64, pp. 3485—3498, (2004).
[3] L. Cortés-Vega and Y. Santiago-Ayala, Decaimiento de la ecuación de onda con disipación. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol IX, Nro. 1, pp. 39—62, (2006).
[4] L. Hörmander - Linear Partial Differential Operators, Springer-Verlag, New York, 116, (1976).
[5] M. Ikawa - Mixed problems for hyperbolic equations of second order. J. Math. Soc. Japan 20, pp. 580—608, (1968).
[6] S. Kesavan - Topics in Functional Analysis and applications. John Wiley & Sons, (1989).
[7] J. Lagnese, Deacay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations 50, pp. 163—182, (1983).
[8] J. Lagnese and J. L. Lions, Modelling Analysis and Control of thin
Plates, Masson, Paris, (1989).
[9] I. Lasiecka and R. Triggiani, Control Problems for Systems Described by Partial Differential Equations and Applications, Springer Verlag Lect. Not., 97 (1987).
[10] I. Lasiecka and G. Avalos, Uniform decay rates of solutions to a structural acoustic model with nonlinear dissipation, Appl. Math Comp. Sci, 8, No. 2, pp. 101—127, (1998).
[11] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diff. Int. Eq, 6, pp. 507—533, (1993).
[12] I. Lasiecka, Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary, J. Diffetential Equations, 79, pp. 340—381, (1989).
[13] V. Komornik- Exact controllability and stabilization. John Wiley & Sons, (1994).
[14] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69, pp. 163-182, (1990).
[15] P. Martinez. - Decay of solutions of the wave equation with a local highly degenerate dissipation. Asymptotic Analysis 19, pp. 1—17, (1999).
[16] M. Nakao - Decay of solutions of the wave equation with a local degenerate dissipation. Israel J. of Maths 95, pp. 25—42, (1996).
[17] A. Pazy - Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, (1983).
[18] Y. Santiago A. - Una aplicación del Lema de Nakao. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM, Nro. 2, pp. 23—36, (2006).
[19] Y. Santiago A. - Decaimiento exponencial de la solución débil de una ecuación de onda no lineal. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol VIII Nro. 2, pp. 29—43, (2005).
[20] Y. Santiago A. and J. Rivera - Global existence and exponential decay to the wave equation with localized frictional damping. PESQUIMAT Revista de la Fac. CC. MM. de la UNMSM. Vol V. Nro. 2, pp. 1—19, (2002).
[21] D. Tataru, Boundary controllability for conservative PDEs, Appl. Math. Optim. 3, pp. 257—295, (1995).
[22] E. Zuazua - Exponential decay for the semi-linear wave equation with locally distributed damping. Comm. Partial Differential Equations. 15, pp. 205—235, (1990).
Downloads
Published
2017-04-18
Issue
Section
Artículos
License
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
[1]
“About Decay Of Solution Of The Wave Equation With Dissipation”, Proyecciones (Antofagasta, On line), vol. 26, no. 1, pp. 37–71, Apr. 2017, doi: 10.4067/S0716-09172007000100003.