Existence of solutions for a system of elastic wave equations


  • Luis A. Cortés Vega Universidad del Bío–Bío.




Elastic waves, Exterior domain, Resonant frequencies.


A simple and short proof of the existence of solutions for the direct scattering problem associated with the system of elastic wave equations is shown.

Author Biography

Luis A. Cortés Vega, Universidad del Bío–Bío.

Departamento de Matemáticas, Facultad de Ciencias.


[1] J. F Ahner, The exterior time harmonic elasticity problem with prescribed displacement vector on the boundary, Arch. Math. 27, pp. 106–111, (1976).

[2] J.F Ahner and G.C. Hsiao, On the two dimensional exterior boundary value problems of elasticity, J. Apll. Math. 31, pp. 677-685, (1976).

[3] M.A. Astaburruaga and R. Coimbra Charao, C. Fernández and G. Perla Menzala, Scattering Frequencies for a perturbed system of elastic wave equations, J. Math. Anal Appl. 219, pp. 52–75, (1998).

[4] R. Coimbra Charao and G. Perla Menzala, Scattering Frequencies and a class of perturbed systems of elastic waves, Math. Meth. In the Appl. Sci. 19, pp. 699–716, (1996).

[5] L. A. Cortés–Vega, The exerior time-harmonic elasticity problem with prescribed stress- traction operator on the boundary, J. Math. Anal. Appl. (submitted).

[6] L. A. Cortés–Vega, “ Frequências de espalhamento e a propagacao de ondas elásticas no exterior de um corpo tridimensional ”. Ph. D. Thesis, (In portuguesse). University of Sao Paulo, Outubro– 2000.

[7] G. Duvaut and J. L. Lions, “Les inequations in Mecanique et en Physique ”, Dunond, Paris, (1972).

[8] G. Fichera, “Existence theorems in elasticity ”, Handbuch der Physik, Springer-Verlag, Berlin, Heidelberg, New York, (1973).

[9] P. Hähner and G.C Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Prob. 9, pp. 525–534, (1993).

[10] P. Hähner, A uniqueness theorem in inverse scattering of elastic waves, IMA J. Of Appl. Math. 51, pp. 201–215, (1993).

[11] V.D. Kupradze, “Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity”, Amsterdam, North– Holand, (1973).

[12] J. T. Marti, “Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems ”, Academic Press, New York, (1986).

[13] M. Costabel and E.P. Stephan, Integral equations for transmission problems in linear elasticity, J. Int. Eq. and Appl. 2, pp. 211–223, (1996).

[14] H. J–P. Morand and R. Ohayon, “ Fluid–Structure interactions ”. John Wiley–Sons, New York, (1995).

[15] J. Necas, “Les méthodos directes em théoria des équations elliptiques ”, Masson, Paris, (1967).

[16] Y–H. Pao, F. Santosa, W.W. Symes and C. Holland, eds., “ Inverse problems of acoustic and elastic waves ”. SIAM, (1984).

[17] O. Poisson, Calcul des pôles de résonance associés à la diffraction d’ondes acoustiques par un obstacle en dimension deux, C. R. Acad. Sci. Paris, I. 315, pp. 747–752, (1992).

[18] A. G. Ramm, “Scattering by obstacles”, Riedel, Dordrecht, (1986).

[19] R. T. Seeley, Integral equations depending analytycally on parameter, Indag. Math. 24, pp. 434–442, (1962).

[20] S. Steinberg, Meromorphic families of compact operators, Arch. Rational. Mech. Anal. 31, pp. 372–379, (1968).



How to Cite

L. A. Cortés Vega, “Existence of solutions for a system of elastic wave equations”, Proyecciones (Antofagasta, On line), vol. 20, no. 3, pp. 305-321, Apr. 2017.