A note on local edge antimagic chromatic number of graphs
DOI:
https://doi.org/10.22199/issn.0717-6279-6014Keywords:
edge coloring, edge independence number, local edge antimagicAbstract
Let $G$ be a finite, undirected and simple graph. A bijection $f : V(G) \to [1,|V(G)|]$ is called a local edge antimagic labeling if for any two adjacent edges $uv,vw \in E(G), f(u) \ne f(w)$. The local edge antimagic chromatic number $\ch(G)$ is the minimum number of colors taken over all colorings induced by local edge antimagic labeling of $G$. In this paper, we investigate characterization of graphs $G$ with small number $\ch(G)$, relationship between local edge antimagic chromatic number $\ch(G)$ and edge independence number $\alpha'(G)$, and bounds of $\ch(G)$ for any graphs.
Downloads
References
bibitem{agus17} I. H. Agustin, M. Hasan, Dafik, R. Alfarisi, and R. M, Prihandini, "Local edge antimagic coloring of graphs", {em Far East J. Math. Sci.}, vol. 102, no. 9, pp. 1925--1941, 2017, http://dx.doi.org/10.17654/MS102091925.
bibitem{agus18} I. H. Agustin, M. Hasan, Dafik, R. Alfarisi, A. I. Kristiana, and R. M. Prihandini, "Local edge antimagic coloring of comb product of graphs", {em J. Phys.: Conf. Ser.}, vol. 1008, pp. 012038, 2018, http://doi.org/10.1088/1742-6596/1008/1/012038.
bibitem{arum17} S. Arumugam, K. Premalatha, M. Baca, and A. Semanicova-Fenovcikova, "Local antimagic vertex coloring of a graph", {em Graphs Combin.}, vol. 33, pp. 275--285, 2017, https://doi.org/10.1007/s00373-017-1758-7.
bibitem{baca22} M. Baca, A. Semanicova-Fenovcikova, R.-T. Lai, and T.-M. Wang, "On local antimagic vertex coloring for complete full t-textit{ary} trees", {em Fund. Inform.}, vol. 185, no. 2, pp. 99--113, 2022, http://doi.org/10.3233/FI-222105.
bibitem{dafi21} Dafik, R. Nisviasari, T. K. Maryati, I. H. Agustin, and M. Venkatachalam, "On local super antimagic total face coloring and the application in developing a cipher block chaining key", {em J. Discrete Math. Sci. Cryptogr.}, vol. 24, no. 97, pp. 1--11, 2021, https://doi.org/10.1080/09720529.2021.1882162.
bibitem{gall22} J. A. Gallian, "A dynamic survey of graph labelings", {em Electron. J. Combin.}, vol. 29, no. #DS6, 2022, https://doi.org/10.37236/27.
bibitem{hadi22} F. F. Hadiputra, D. R. Silaban, and T. K. Maryati, "Local antimagic vertex coloring of wheel graph and helm graph", {em In Proceedings of the 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath 2019)}, pp. 185--189, 2022, http://doi.org/10.5220/0010138400002775
.
bibitem{hadi19} F. F. Hadiputra, D. R. Silaban, and T. K. Maryati, "Super local edge anti-magic total coloring of paths and its derivation", {em Indones. J. Comb.}, vol. 3, no. 2, pp. 126--139, 2020, https://dx.doi.org/10.19184/ijc.2019.3.2.6.
bibitem{hadi21} F. F. Hadiputra, K. A. Sugeng, D. R. Silaban, T. K. Maryati, and D. Froncek, "Chromatic number of super vertex local antimagic total labelings of graphs", {em Electron. J. Graph Appl.}, vol. 9, no. 2, pp. 485--498, 2021, https://dx.doi.org/10.5614/ejgta.2021.9.2.19.
bibitem{hasl18} J. Haslegrave, "Proof of a local antimagic conjecture", {em Discrete Math. Theor. Comput. Sci.}, vol. 20, no. 1, pp. #18, 2018, https://doi.org/10.23638/DMTCS-20-1-18.
bibitem{hima21} Z. R. Himami and D. R. Silaban, "On local antimagic vertex coloring of corona products related to friendship and fan graph", {em Indones. J. Comb.}, vol. 5, no. 2, pp. 110--121, 2021, https://dx.doi.org/10.19184/ijc.2021.5.2.7.
bibitem{kurn21} E. Kurniawati, I. H. Agustin, Dafik, and Marsidi, "On the local antimagic labeling of graphs amalgamation", {em J. Phys.: Conf. Ser.}, vol. 1836, pp. 012021, 2021, http://doi.org/10.1088/1742-6596/1836/1/012021.
bibitem{nall21} M. Nalliah, R. Shankar, and T.-M. Wang, "Local antimagic vertex coloring for generalized friendship graphs", {em J. Discrete Math. Sci. Cryptogr.}, http://doi.org/10.1080/09720529.2021.1974651.
bibitem{lau23} G.-C. Lau and W.-C. Shiu, "On local antimagic chromatic number of lexicographic product graphs", {em Acta Math. Hungar.}, vol. 169, no. 1, pp. 158--170, 2023, https://doi.org/10.1007/s10474-023-01305-x.
bibitem{rajk22} S. Rajkumar and M. Nalliah, "On local edge antimagic chromatic number of graphs", {em Proyecciones}, vol. 41, no. 6, pp. 1397--1412, 2022, https://doi.org/10.22199/issn.0717-6279-5339.
bibitem{sapu17} S. W. Saputro, N. Mardiana, and I. A. Purwasih, "The metric dimension of comb product graphs", {em Mat. Vesnik}, vol. 69, no. 4, pp. 248--258, 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fawwaz Fakhrurrozi Hadiputra, Tita Khalis Maryati
This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.