Some bounds onfirst degcity index




Zagreb index, Topological indices, Degcity index, degree, eccentricity


The first degcity index DC1(G) of a connected graph G is defined as the sum of the terms [ex+ey][dx+dy] over all the lines xy of G, where dx and ex represents the degree and eccentricity of a point x in G respectively. In this article, we have obtained some lower and upper bounds of first degcity index.

Author Biographies

P. S. Guruprasad, Government First Grade College.

Affiliated to University of Mysore.

Department of Mathematics.

K. B. Sudhakara , Government Science College.

Department of Mathematics.

M. A. Sriraj, Vidyavardhaka College of Engineering.

Department of Mathematics.


K. C. Das, "Sharp bounds for the sum of the squares of the degrees of a graph", Kragujevac J. Math, vol. 25, pp. 31-49, 2003

T. Doslic, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, "On vertex-degree-based molecular structure descriptors", MATCH Commun. Math. Comput. Chem, vol. 66, pp. 613-62, 2011.

S. Fajtlowicz, "On conjectures on Grati-II", Congr. Numer, vol. 60, pp. 187- 197,1987.

F. Flahati-Nezhad and M. Azari, "Bounds on the hyper-zagreb index", J. Appl. Math. and Informatics, vol. 34 no. 3-4, pp.319-330, 2016.

B. Furtula and I. Gutman, "A forgotten topological index", J. Math. Chem, vol. 53, no.4, pp. 1184-1190, 2015.

I. Gutman and N. Trinajstic, "Graph theory and molecular orbitals. Total - electron energy of alternant hydrocarbons", Chem. Phys. Lett, vol. 17, pp.535-538, 1972.

F. Harary, Graph Theory, Addison-Wesley Publishing Company, 1969.

S. M. Hosamani and B. Basavanagoud, "New upper bounds for the rst zagreb index", MATCH Commun. Math. Comput. Chem., vol. 74 , pp. 97- 101, 2015.

A. Ilic and D. Stevanovic, "On comparing Zagreb indices", MATCH Commun. Math. Comput. Chem., vol. 62,pp. 681-687, 2009.

A. Ilic, G. Yu and L. Feng, "On the eccentric distance sum of graphs", J. Math. Anal. Appl., vol.381, pp. 590-600, 2011.

Nilanjan De, "On multiplicative zagreb eccentricity indices", South Asian Journal of Mathematics, vol. 2, no. 6, pp. 570-577, 2012.

Nilanjan De, "New bounds for zagreb eccentricity indices", Open Journal of Discrete Mathematics, vol. 3, pp. 70-74, 2013. https://doi:10.4236/ojdm.2013.31014.

G. Polya and G. Szego, Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions, Springer-Verlag, Berlin, (1972).

V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci. 37 (1997), 273-282.

G. H. Shirdel, H. Rezapour and A. M. Sayadi, "The Hyper-Zagreb index of Graph operations", Iranian J. Math. Chem., vol. 4, pp. 213-220, 2013.

K. B. Sudhakara, P. S. Guruprasad and M. A. Sriraj, "Prediction Potential of Degcity Indices for Physico-Chemical Properties of Polycyclic Aromatic Hydrocarbons: A QSPR Study", Biointerface Journal of Applied Chemistry (Accepted).

B. J. Venkatachala, Inequalites - An Approach Through Problems, Hindustan Book Agency, New Delhi, India, (2009). [18] D. Vukicevic and A. Graovac, "Note on the comparison of the rst and second normalized Zagreb eccentricity indices", Acta Chim. Slov., vol. 57, pp. 524-528, 2010. PMID:24061796.

H. Van de Waterbeemd, R.E. Carter, G. Grassy, H. Kubinyi, Y.C. Martin, M.S. Tute, P. Willett, "Glossary of terms used in computational drug design (IUPAC Recommendations 1997)", Pure and applied chemistry, vol. 69, no. 5, pp. 1137-1152, 1997.

B. Zhou, "Zagreb indices", MATCH Commun. Math. Comput. Chem., vol. 52, pp. 113-118, 2004.

B. Zhou and Z. Du, "On eccentric connectivity index", MATCH Commun. Math. Comput. Chem., vol. 63, pp. 181-198, 2010.



How to Cite

P. S. Guruprasad, K. B. . Sudhakara, and M. A. . Sriraj, “Some bounds onfirst degcity index”, Proyecciones (Antofagasta, On line), vol. 43, no. 3, pp. 743-759, May 2024.




Most read articles by the same author(s)