A semilinear non-homogeneous problem related to Korteweg-de Vries Equation

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-5825

Keywords:

semilinear problem, KdV equation, existence, uniqueness, regularity, anisotropic Sobolev space

Abstract

In this paper, we consider a non-homogeneous generalized Korteweg-de Vries problem with some hypotheses on the right-hand side, and we give a new regularity result of the solution in an anisotropic Sobolev space. Then we apply the obtained result to a non-homogeneous KdV problem. This work is an extension of solvability results for a right-hand side f in Lebesgue space.

Downloads

Download data is not yet available.

Author Biography

  • Boubaker-Khaled Sadallah, Ecole Normale Supérieure - Kouba.

    Department of Mathematics, Lab. E.D.P.N.L.

References

E. N. Aksan and A. Ozdes, Numerical solution of Korteweg-de Vries

equation by Galerkin B-spline finite element method, Applied Mathematics and Computation, Vol. 175, No. 2, pp. 1256-1265, 2006. doi.org/10.1016/j.amc.2005.08.038

A. R. Bahadir, Exponential finite difference method applied to

Korteweg-de Vries equation for small times, Appl. Math. Comput.

, 675-682, 2005. doi.org/10.1016/j.amc.2005.08.038

A. Behzadan, M. Holst, Multiplication in Sobolev spaces, revisited.

Available as, 2015. doi.org/10.48550/arXiv.1512.07379

Y. Benia and B. K. Sadallah, Existence of solution to Korteweg-de

Vries equation in domains that can be transformed into rectangles,

Mathematical Methods in the Applied Sciences, Vol. 41, No. 7, pp.

-2698, 2018. doi.org/10.1002/mma.4773

Y. Benia and A. Scapellato, Existence of solution to Korteweg-de Vries

equation in a non-parabolic domain, Nonlinear Analysis, Vol. 195, p.

-12, 2020. doi.org/10.1016/j.na.2020.111758.

Y. Benia, B-K. Sadallah; On the regularity of the solution of nonhomogeneous Burgers equation, Yokohama Mathematical Journal, Vol

(8), pp. 107-124, 2020. DOI: 10.18880/00014022.

T. B. Benjamin, J. L. Bona, J. J. Mahony; Model equations for long

waves in nonlinear dispersive systems. Trans. Roy. Soc. (Lond.) Ser.

A, 272, 47-78, 1992. doi.org/10.1098/rsta.1972.0032

D. G. Crighton Applications of KdV, Acta Applicandae Mathematicae

, 39-67, 1995. doi.org/10.1007/BF00994625.

J. Kevorkian, Partial differential equations: Analytical solution techniques, New York, NY: Chapman amp; Hall, 1996.

J. L. Lions and E. Magenes, Problemes aux limites non homogenes et

applications, Paris: Dunod, 1970. 10.5802/aif.111.

M. He-Ping and G. Ben-Yu, The Fourier pseudospectral method

with a restrain operator for the Korteweg-de Vries equation, Journal of Computational Physics, Vol. 65, No. 1, pp. 120-137, 1986.

doi.org/10.1016/0021-9991(86)90007-0.

S. Zhang, EXP-function method exactly solving a KdV equation with

forcing term, Applied Mathematics and Computation, Vol. 197, No. 1,

pp. 128-134, 2008. doi.org/10.1016/j.amc.2007.07.041.

Downloads

Published

2024-04-03

Issue

Section

Artículos

How to Cite

[1]
“A semilinear non-homogeneous problem related to Korteweg-de Vries Equation”, Proyecciones (Antofagasta, On line), vol. 43, no. 2, pp. 401–423, Apr. 2024, doi: 10.22199/issn.0717-6279-5825.