k-Zumkeller Graphs through Splitting of Graphs
DOI:
https://doi.org/10.22199/issn.0717-6279-5723Keywords:
Zumkeller number, k-Zumkeller graph, splitting graphAbstract
Let G = (V,E) be a simple graph with vertex set V and edges set E. A 1−1 function f : V → N is said to induce a k-Zumkeller graph G if the induced edge function f ∗ : E → N defined by f ∗(xy) = f(x)f(y) satisfies the following conditions:
- f ∗(xy) is a Zumkeller number for every xy ∈ E.
- The total distinct Zumkeller numbers on the edges of G is k.
In this article, we compute k-Zumkeller graphs through the graph splitting operation on path, cycle and star graphs.
References
B. J. Balamurugan, K. Thirusangu and D. G. Thomas, ”k-Zumkeller labeling for twig graphs.”, Electronic Notes in Discrete Mathematics, vol. 48, pp. 119–126, 2015, doi: https://doi.org/10.1016/j.endm.2015.05.017.
B. J. Balamurugan, K. Thirusangu, D. G. Thomas and B. J. Murali, ”k-Zumkeller labeling of graphs.”, International Journal of Engineering & Technology, vol. 7, pp. 460-463, 2018, doi:https://doi.org/10.14419/ijet.v7i4.10.21040.
M. Basher, ”k-Zumkeller labeling of super subdivision of some graphs.”, J Egypt Math Soc, vol. 29 issue. 12, 2021, doi:https://doi.org/10.1186/s42787-021-00121-y.
M. Basher, ”k-Zumkeller labeling of the cartesian and tensor product of paths and cycles.”, Journal of Intelligent & Fuzzy Systems, vol. 40, pp. 5061-5070, 2021, doi: https://doi.org/10.3233/JIFS-201765.17.
G. S. Bloom and S. W. Golomb, ”Applications of numbered undirected graphs.”, Proceedings of IEEE, vol. 65 issue. 4, pp. 526-570, 1977, doi:https://doi.org/10.1109/PROC.1977.10517.
Dharmendra Krishnaa Gurjar, and Auparajita Krishnaa, ”Lexicographic labeled graphs in cryptography.”, Advances and Applications in Discrete Mathematics, vol. 27, issue. 2, pp. 209-232, 2021, doi: https://doi.org/10.17654/DM027020209.
Frank Buss, ”Zumkeller numbers and partitions.”, http://www.luschny.de/math/seq/FrankBussZumkellerNumbers.html.
J. A. Gallian, ”A dynamic survey of graph labeling.”, Electronic J. Combin, vol. 17, # DS6, 2021.
F. Harary, ”Graph Theory.”, CRC Press, 2019.
R. Kuppan, L. Shobana and Ismail Naci Cangul, ”Encryption and decryption algorithms using strong face graph of a tree.”, International Journal of Computer Mathematics,Computer Systems Theory, pp. 225-233, 2020, doi:https://doi.org/10.1080/23799927.2020.1807606.
A. Rosa, ”On certain valuations of the vertices of a graph.”, In Theory of Graphs (Internat.Sympos. Rome. 1966), Gordan and Breach, Newyork, Dunod, Paris, pp. 349-359, 1967.
E. Sampathkumar and H. B. Walikar, ”On the Splitting graph of a graph.”, J. Karnataka University Journal, vol. 25 and 26 combined, pp. 13 -16, 1980-1981.
A. K. Srinivasan, ”Practical numbers.”, Current Science, vol. 17, pp. 179-180,1948.
D. B. West, ”Introduction to Graph Theory.”, PHI Learning Private Limited, 2nd Edition, 2009.
Yuejian Peng and K. P. S. Bhaskara Rao, ”On Zumkeller numbers.”, J. Number Theory, vol. 133(4), pp. 1135-1155, 2013,
Published
How to Cite
Issue
Section
Copyright (c) 2023 M. Kalaimathi , B. J. Balamurugan

This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.