A study on derivations of inverse semirings with involution





Semirings, inverse semirings, Lie ideals, derivations


In this research article,  we study the influence of derivations on semirings with involution which resembles with commutativity preserving mappings. The action of derivations on Lie ideals and some differential identities regarding Lie ideals are also investigated. It is proved that for any two derivations d1, d2 of a prime semiring S with involution ⋆ such that atleast one of d1, d2 is nonzero and char(S)  2, then the identity [d1(a), d2(a )] + d2(a ◦ a ) = 0, for all a ∈ L implies [L , S] = (0), where L is a Lie ideal of S.


M. A. Javed, M. Aslam and M. Hussain, “On condition (A2) of Bandlet

and Petrich for inverse semirings”, International Mathematical Forum,

Vol. 7, No. 59, pp. 2903-2914, 2012.

H. J. Bandlet, M. Petrich, “Subdirect products of rings and distributive lattices”, Proceeding of the Edinburgh Mathematical Society, Vol.

, No. 2, pp. 135-171, 1982, doi: 10.1017/S0013091500016643

L. Ali, M. Aslam and Y. A. Khan, “Commutativity of semirings with

involution”, Asian-European journal of mathematics, Art ID. 2050153,

, doi: 10.1142/S1793557120501533.

L. Ali, Y. A. Khan, A. A. Mousa, S. Abdel-Khalek and G. Farid, “Some

differential identities of MA-semirings with involution”, AIMS Mathematics, Vol. 6, No. 3, pp. 2304-2314, doi:10.3934/math.2021.2021139

K. I. Beidar and W. S. Martindale, “On functional identities in prime

rings with involution”, Journal of Algebra, Vol. 203, No. 2, pp. 491-532,

, doi:10.1006/jabr.1997.7285

J. Berger, I. N. Herstein and J. W. Kerr, “Lie ideals and derivations

of prime rings”, Journal of Algebra, Vol. 71, No. 1, pp. 259-267, 1981,


M. Dadhwal and G. Devi, “On generalized derivations of semirings”,

Georgian Mathematical Journal, doi.org/10.1515/gmj-2022-2178

M. Dadhwal and Neelam, “On derivations and Lie structure of semirings”, Advances and Applications in Mathematical Sciences, Accepted

I. N. Herstein, “Rings with involution”, Chicago, IL: University of

Chicago, 1976.

P. H. Karvellas, Inversive semiring, Cambridge University Press, Vol.

, No. 3, pp. 277-288, 1974, doi.org/10.1017/S1446788700022850

C. Lanski, “Commutation with skew elements in rings with involution”, Pacific Journal of Mathematics, Vol. 83, No. 2, pp. 393-399,

T. K Lee, “On derivations of prime rings with involution”, Chinese Journal Mathematics, Vol. 20, No. 2, 191-203, 1992. Available:


E. C. Posner, “Derivations in prime rings”, Proceedings of American Mathematical Society, Vol. 8, No. 6, pp.1093-1100, 1957,


L. Ali, M. Aslam and Y. A. Khan, “On additive maps of MA-semirings

with involution”, Proyecciones (Antofagasta), Vol. 39, No. 4, pp. 1097-

, 2020, doi:10.22.199/issn.0717-6279-2020-04-0067

L. Ali, M. Aslam and Y. A. Khan, “Some results on commutativity of

MA-semirings”, Indian Journal Science and Technology, Vol. 13, No.

, 3198-3203, 2020, doi:10.17485/IJST/v13i31.1022



How to Cite

M. Dadhwal and G. . Devi, “A study on derivations of inverse semirings with involution”, Proyecciones (Antofagasta, On line), vol. 43, no. 2, pp. 383-400, Apr. 2024.