A Mathematical modelling for co-infection dynamics of Japanese encephalitis-Dengue and influence of JE Vaccine on Dengue disease

Authors

  • Ananya Dwivedi Madan Mohan Malaviya University of Technology.
  • Ram Keval Mahatma Jyotiba Phule Rohilkhand University.
  • Vinod Baniya KIPM College of Enginering and Technology.

DOI:

https://doi.org/10.22199/issn.0717-6279-5246

Keywords:

JE-dengue co-infection, Basic reproduction number, Stability analysis, Bifurcation analysis, Sensitivity analysis

Abstract

A non-linear deterministic mathematical model has been described with the co-infection dynamics of Japanese encephalitis(JE) and dengue disease, incorporating the JE vaccine. A basic reproduction number is discussed to study transmission potential of the co-infection model. In co-infection model, disease-free equilibrium points of Japanese encephalitis and dengue, along with endemic, are presented in system and investigated their stability with the help of their specified method. Our analysis suggests that vaccination against Japanese encephalitis positively affect control of co-infection. By using Center Manifold Theory, the model undergoes backwards bifurcation phenomenon and this has been occurred when basic reproduction number is smaller than unity. It is shown that by taking simultaneous preventive steps, the basic reproduction number of co-infection can be reduced to less than one after eliminating both infections. Sensitivity analysis has been performed to determine which parameters significantly affect disease dynamics. The effects of these parameters on transmission of disease were investigated using a numerical simulation. According to the findings, we obtain that JE-dengue co-infection can be managed with use of JE vaccine, also minimize JE transmission rate rapidly.

Author Biographies

Ananya Dwivedi, Madan Mohan Malaviya University of Technology.

Department of Mathematics and Scientific Computing

Ram Keval, Mahatma Jyotiba Phule Rohilkhand University.

Applied Mathematics Department.

Vinod Baniya, KIPM College of Enginering and Technology.

Department of Applied Sciences and Humanities.

References

World Health Organization, Japanese encephalitis fact sheets., Available from: https://www.who.int/news-room/fact-sheets/details/Japaneseencephalitis(12/09/2021), 2021.

World Health Organization, Dengue virus fact sheets., Available from: https://www.who.int/news-room/fact-sheets/detail/dengueand-severe-dengue (21/09/2021), 2021.

National Vector Borne Disease Control Programme, JE-Dengue/DHFsituation in India, Available from: https://www.https://nvbdcp.gov.in/index4 (1/11/2021), 2021.

Kathuria R., Choudhary P., Kashyap A., Ansari E., Kamal M., Dengue virus and Japanese encephalitis virus co-infection: A case report., IP Int. J. Med. Paed. Onco., Vol. 6 (4), pp.169-171, 2020.

Fox A., Whitehead S., Anders K., Short Report: Investigation of Dengue and Japanese Encephalitis Virus Transmission in Hanam, Viet Nam., Am. J. Trop. Med. Hyg., Vol. 90 (5), pp. 892-896, 2014.

Srivastav A. K., Goswami N. K., Ghosh M., Li Xue-Zhi, Modelling and optimal control analysis of Zika virus with media impact. Int. J. Dyn. Cont., Vol. 6, pp. 1673-1689, 2018.

Panja P., Mondal S. K., Chattopadhyay J., Stability and bifurcation analysis of Japanese encephalitis model with/without effect of some control parameters., Comp. Appl. Math., Vol. 37, pp. 1330-1351, 2018.

Garg R. K., Malhotra H. S., Gupta A., Kumar N., Jain A., Concurrent dengue virus and Japanese encephalitis virus infection of the brain: is it co-infection or co-detection. Infection, Vol. 40, pp. 589-593, 2012.

Wang L., Zhao H., Dynamics analysis of a Zika-dengue co-infection model with dengue vaccine and antibody-dependent enhancement., Physica A https://doi.org/10.1016/j.physa.2019.01.099, 2019.

Singh K. P., Mishra G., Jain M., Co-positivity of anti-dengue virus and anti-Japanese encephalitis virus IgM in endemic area: co-infection or cross reactivity, Asian Pac J Trop Med, pp. 412-420, 2013, DOI: 10.1016/S1995-7645(14)60007-9.

Irena T. K., Gakkhar S., A dynamical model for HIVtyphoid co-infection with typhoid vaccine, J. Appl. Math. Comp.,

https://doi.org/10.1007/s12190-020-01485-7, 2021.

Diekmann O., Heesterbeek J. A. P., Metz J. A. J., On the definition and the computation of the basic reproduction ratio in models for infectious diseases in heterogeneous populations, J. Math. Biol., Vol. 28, pp. 365-382, 1990.

Tapaswaia P. K., Khosh A. K., Mukhopadhyay B. B., Transmission of Japanese Encephalitis in a 3-population model, Ecol. Model, Vol. 83, pp. 295-309, 1995.

Mukhopadhyay B. B., Tapaswi P. K., Chatterjee A., Mukherjee B., A mathematical model for the occurence of japanese Encephalititis., Math. Comput. Model., Vol. 17, pp. 99-103, 1993.

Kuniya T., Inaba H., Yang J., Global behaviour of SIS epidemic models with age structure and spatial heterogeneity., J. J.Indust. Appl. Math., Vol. 35, pp. 669-706, 2018.

Li J., Teng Z., Zhang L., Stability and bifurcation in a vector-bias model of malaria transmission with delay, Math. Comput. Simulation. https://doi.org/ 10.1016/j.matcom.2018.04.009, 2018.

De A., Maity K., Jana S., Maiti M., Application of various control strategies to Japanese encephalitis: A mathematical study with human, pig and mosquito., Math. Biosci., Vol. 282, pp. 46-60, 2016.

Baniya V., Keval R., The influence of vaccination on the control of JE with a standard incidence rate of mosquitoes, pigs and humans, J. Appl. Math. Comput. https://doi.org/ 10.1007/s12190-020-01367-y, 2020.

Baniya V., Keval R., The impact of time delay in the transmission of Japanese encephalitis without vaccination, J. Proyecciones (Antofagasta). http://dx.doi.org/10.22199/issn.0717-6279-4619, Vol. 40 (6), 2021. 36 Ananya Dwivedi, Ram Keval and Vinod Baniya

Srivastav A. K., Ghosh M., Assessing the impact of treatment on dynamics of dengue fever: A case study of India, Appli. Mathe. and Computa., Vol. 362, pp. 124533, 2019.

LaSalle J. P., The stability of dynamical system, In: Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1976.

Castillo-Chavez C., Song B., Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., Vol. 2, pp. 361-404, 2004.

Chen C., Xiao Y., Modelling Saturated Diagnosis and Vaccination in Reducing HIV/AIDS Infection, Abstract and Applied Analysis 1-12. https://doi.org/10.1155/2014/414383, 2014.

Carvalho A., Pinto Carla M. A., A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dynam. Control, Vol. 5, pp. 168-186, 2017.

Singh A. K., Kharya P., Agarwal V., Singh S., Singh N. P., Jain P. K., et al., Japanese encephalitis in Utter Pradesh, India: A situational analysis, J. Family Med. Prim. Care, pp. 3716-3721, 2020, https://doi:10.4103/jfmpc.jfmpc-449-20.

Agusto F. B., Adekunle A. I., Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model, BioSystems, Vol. 119, pp. 20-24, 2014.

Pinto C. M. A., Carvalho A. R. M., New findings on the dynamics of HIV and TB coinfection models, App. Math. and Computation, Vol. 242, pp. 36-46, 2014.

Bhunu C. P., Mushayabasa S., Transmission dynamics of Trichomonas vaginalis and HIV/AIDS coinfection, HIV & AIDS Review Co, Vol. 14, pp. 126-132, 2015. https://doi.org/10.1016/j.hivar.2015.05.005.

Gandhi V., Al-Salti1 S. N., Elmojtaba I., Mathematical analysis of a time delay visceral leishmaniasis model, J. Appl. Math. Comput. https://doi.org/10.1007/s12190-019-01315-5, 2019.

Feyissa S., Banerjee S., Delay-induced oscillatory dynamics in humoral mediated immune response with two-time delays, Non-linear Analysis: Real World Applications, Vol. 14, pp. 35-52, 2013. Mathematical modelling for co-infection dynamics of Japanese ... 37

Avila-Vales E., Chan-Chi N., Garc´ia-Almeida G. E., Vargas-De-Leon C., Stability and Hopf bifurcation in a delayed viral infection model with mitosis transmission, Appl. Math. Comput., Vol. 259, pp. 293- 312, 2015.

Marino S., Hogue I. B., Ray C. J., Kirschner D. E., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., Vol. 254 (1), pp. 178-196, 2008.

Wu J., Dhingra R., Gambhir M., Remais J. V., Sensitivity analysis of infectious disease models: methods, advances and their application, J. R. Soc. Interface, Vol. 10 (86), pp. 20121018, 2013.

Ma Z., Wang S., A generalized predator-prey system with multiple discrete delays and habitat complexity, J..J..Indust..Appl..Math. https://doi.org/10.1007/s13160-019-00343-9, 2020.

Balasubramaniam P., Prakash M., Rihan F., Lakshmanan S., Hopf bifurcation and stability of periodic solutions for delay differential model of HIV infection of CD4+ T-cells, Abstr. and Appli. Analy. http://doi.org/10.1155/2014/838396, 2014.

Khajanchi S., Banerjee S., Influence of multiple delays in brain tumor and immune system interaction with T11 target structure as a potent stimulator, Math. Biosci., Vol. 302, pp. 116-130, 2018.

Zhu M., Xu Y., A time-periodic dengue fever model in a heterogeneous environment, Math. and com. in simul., Vol. 155, pp. 115-129, 2019.

Van den Driessch P., Watmough J., Reproduction Number and sub threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., Vol. 180, pp. 29-48, 2002.

Mishra A., Ambrosio B.,Gakkhar S., Aziz-Alaoui M., A network model for control of dengue epidemic using sterile insect technique, Math. Boisci., Vol. 15, pp. 441-460, 2018.

Allen linda J. S., Burgin Amy M., Comparison of deterministic and stochastic SIS and SIR models discrete-time, Math. Biosci., Vol. 163, pp. 1-33, 2000.

Misra A. K., Sharma A., A. Mathematical Model for Control of VectorBorne Disease Through Media Campaigns, Discrete Contin. Dyn. Syst. Ser. B., Vol. 18, pp. 1909-1927, 2013. 38 Ananya Dwivedi, Ram Keval and Vinod Baniya

Nur W., Rachman H., Abdal M. N., SIR Model Analysis for Transmission of Dengue Fever Disease with climate Lyapunov Function., Jour. of Phys., Vol. 1028. DOI:10.1088/1742-6596/1028/1/012117, 2018.

Zheng T. T., Nie L. F., Modelling the transmission dynamics of twostrain Dengue in the presence awareness and vector control., Jour. of theo. bio., Vol. 443, pp. 82-91, 2018.

Panja P., Mondal K. S., Chattopadhyay J., Stability, Bifurcation and Optimal Control Analysis of a Malaria Model in a Periodic Environment, Inter. Jour. of Nonli. Scie. and Numer. Simul. 1515. DOI.org/10.1515/ijnsns-2017-0221, 2018.

Taghikhani R., Gurmel A. B., Mathematics of Dengue Transmission Dynamics: Role of vector vertical transmission and temperature fluctuations. Comm. in nonlin. Sci. and Num. Sim., Vol. 22, pp. 266-292, 2015.

Driessche P. V. D., Reproduction number of infection disease model, Inf. Dis. Modl., Vol. 2 (3), pp. 288-303, 2017.

Van den Driessche P., Watmough J., Reproduction number and subthreshold endemic equilibrium for compartmental models of disease transmission, Math Biosci., Vol. 180, pp. 29-48, 2002.

Chitnis N., Cushing J. M., Hyman J. M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM Journal on Applied Mathematics, Vol. 67 (1), pp. 24-45, 2006.

Sardar T., Rana S., Chattopadhyay J., A mathematical model of dengue transmission with memory, Comm. in Nonlin. Sci. and Num. Sim., Vol. 22, pp. 511-525, 2015.

Banerjee S, Keval R, Influence of Intracellular Delay on the dynamics of Hepatitis C Virus, Appl. Comput. Math, DOI: 10.1007/s40819-018-0519-5, 2018.

Syafruddin S, Noorani M. S. Md., Lyapunov function of SIR and SEIR model for transmission of dengue fever disease. Int. J. Simu. and Proce. Modeli., Vol. 8, pp. 177-184, 2013

Published

2024-03-20

How to Cite

[1]
A. . Dwivedi, R. Keval, and V. Baniya, “A Mathematical modelling for co-infection dynamics of Japanese encephalitis-Dengue and influence of JE Vaccine on Dengue disease”, Proyecciones (Antofagasta, On line), vol. 43, no. 1, pp. 1-39, Mar. 2024.

Issue

Section

Artículos