Ball convergence of derivative free iterative methods with or without memory using weight operator technique




Derivative free method, ball convergence, Banach space valued equation


A method without memory as well as a method with memory are developed free of derivatives for solving Banach space valued equations. Their ball convergence analysis is provided using only the derivative and the divided difference of order one in contrast to earlier works on the real line using the fifth as well as the seventh derivative. This way the applicability is expanded for these methods.


S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl, 366(2010)24-32.

I. K. Argyros, A unifying local-semilocal convergence analysis and applica- tions for two-point Newton-like methods in Banach spaces, J. Math. Anal. Appl. 298 (2004) 374-397.

I.K.Argyros, Convergence and Applications of Newton-Type Iterations, Springer-Verlag, New York, 2008.

I. K. Argyros, A semilocal convergence analysis for directional Newton meth- ods, Math. Comp. 80 (2011) 327-343.

I. K. Argyros, Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics, 15, Editors: Chui C.K. and Wuytack L. Elsevier Publ. Company, New York (2007).

I. K. Argyros, A. A. Magreñán, Iterative method and their dynamics with applications, CRC Press, New York, USA, 2017.

I. K.,Argyros, S. George, A. A. Magreñán, Local convergence for multi- point- parametric Chebyshev-Halley-type method of higher convergence order. J. Comput. Appl. Math. 282, 215-224 (2015).

I. K.Argyros, A. A., Magreñán, A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1-23, (2015).

I. K. Argyros, S. George, On the complexity of extending the convergence region for Traubs method, Journal of Complexity 56, 101423. 8 12123

I. K. Argyros, S. George, Mathematical modeling for the solution of equations and systems of equations with applications, Volume-IV, Nova Publishes, NY, 2020.

F. I. Chicharro, A. Cordero, J. R. Torregrosa, Dynamics of iterative families with memory based on weight functions proce

F. I. Chicharro, A. Cordero, J. R. Torregrosa, Drawing dynamical and pa- rameters planes of iterative families and methods, Sci. World J. 2013 (780513) (2013)1-11.

A. Cordero, J. R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas, Appl. Math. Comput., 190 (2007) 686-698

J. Dzunic, M.S. Petkovic,On generalized biparametric multi point root find- ing methods with memory, J. Comput. Appl. Math., 255 (2014) 362-375.

H.T. Kung, J.F. Traub,Optimal order of one point and multi point iteration, J. Assoc. Comput. Mach., 21(4) (1974) 643-651.

A. A. Magrenan, A new tool to study real dynamics: The convergence plane, Appl. Math. Comput., 248 (2014) 215-224.

B. Neta, A new family of high order methods for solving equations, Int. J. Comput. Math., 14(1983)191-195.

J. M. Ortega, W. G. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, SIAM,1970.

M. S. Petkovic, J. Dzunic, L. D. Petkovid, A family of two point methods with memory for solving non linear equations, Appl. Anal. Discrete Math., 5(2011)298-317.

J. R. Sharma, P. Gupta, On some highly efficient derivative free methods with and without memory for solving nonlinear equations, Int. J. Com- put.Methods, 12(2015)1-28.

J. F. Steffensen, Remarks on iteration,Scand. Actuar. J., 16(1993) 64-72.

J. F. Traub, Iterative Methods for the Solution of Equations,Prentice Hall,1964.



How to Cite

I. Argyros, S. . George, and C. . Argyros, “Ball convergence of derivative free iterative methods with or without memory using weight operator technique”, Proyecciones (Antofagasta, On line), vol. 43, no. 3, pp. 649-663, May 2024.