An existence result for a strongly nonlinear parabolic equations with variable nonlinearity
DOI:
https://doi.org/10.22199/issn.0717-6279-4457Keywords:
Strongly nonlinear parabolic equations, Variable exponents, Weak solution, ExistenceAbstract
We prove the existence of a solution for the strongly nonlinear parabolic initial boundary value problem associated to the equation
ut − div a(x, t, ∇u) + g(x, t, u, ∇u) = f,
where the vector field a(x, t, ξ) exhibits non-standard growth conditions.
Downloads
References
H. Amann, Ordinary differential equations: an introduction to nonlinear analysis. Berlin: De Gruyter, 1990.
S. Antontsev and S. Shmarev, “Anisotropic parabolic equations with variable nonlinearity”, Publicacions matemàtiques, vol. 53, pp. 355–399, 2009. https://doi.org/10.5565/publmat_53209_04
M. Bendahmane, P. Wittbold, and A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data”, Journal of differential equations, vol. 249, no. 6, pp. 1483–1515, 2010. https://doi.org/10.1016/j.jde.2010.05.011
L. Boccardo, F. Murat, and J. P. Puel, “Existence of bounded solutions for non linear elliptic unilateral problems”, Annali di matematica pura ed applicata, vol. 152, no. 1, pp. 183–196, 1988. https://doi.org/10.1007/bf01766148
Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM journal on applied mathematics, vol. 66, no. 4, pp. 1383–1406, 2006. https://doi.org/10.1137/050624522
L. Diening, P. Nägele, and M. Růžička, “Monotone operator theory for unsteady problems in variable exponent spaces”, Complex variables and elliptic equations, vol. 57, no. 11, pp. 1209–1231, 2011. https://doi.org/10.1080/17476933.2011.557157
L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents. Berlin: Springer, 2011.
X.-L. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω)”, Journal of mathematical analysis and applications, vol. 263, no. 2, pp. 424–446, 2001. https://doi.org/10.1006/jmaa.2000.7617
Y. Q. Fu and N. Pan, “Existence of solutions for nonlinear parabolic problem with p(x)-growth”, Journal of mathematical analysis and applications, vol. 362, no. 2, pp. 313–326, 2010. https://doi.org/10.1016/j.jmaa.2009.08.038
P. Harjulehto, P. Hästö, M. Koskenoja, and S. Varonen, “The dirichlet energy integral and variable exponent sobolev spaces with zero boundary values”, Potential analysis, vol. 25, no. 3, pp. 205–222, 2006. https://doi.org/10.1007/s11118-006-9023-3
O. Kovácik and J. Rákosník, “On Spaces Lp(x) and Wk,p(x)”, Czechoslovak mathematical journal, vol. 41, pp. 592-618, 1991.
R. Landes, “On the existence of weak solutions for quasilinear parabolic initial-boundary value problems”, Proceedings of the royal society of Edinburgh: Section A mathematics, vol. 89, no. 3-4, pp. 217–237, 1981. https://doi.org/10.1017/s0308210500020242
J.-L. Lions, Quelques m´ethodes de r´esolution des probl`emes aux limites non lineaires. Paris: Dunod Gauthier Villars, 1969.
J. -L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Paris: Dunod Gauthier Villars, 1968.
M. Růžička, Electrorheological fluids: modeling and mathematical theory. Berlin: Springer, 2000.
S. G. Samko, ”Density of C ∞ 0 (RN) in the generalized Sobolev spaces Wm,p(x) (Rn )”, Doklady Akademii Nauk, vol. 369, no. 4, pp. 451-454, 1999.
J. Simon, “Compact set in the space Lp(0,T,B)”, Annali di matematica pura ed applicata, vol. 146, pp. 65-96, 1987. Available: https://bit.ly/3HTNuLM
A. Youssfi, E. Azroul, and B. Lahmi, “Nonlinear parabolic equations with nonstandard growth”, Applicable analysis, vol. 95, no. 12, pp. 2766–2778, 2015. https://doi.org/10.1080/00036811.2015.1111999
C. Zhang and S. Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data”, Journal of differential equations, vol. 248, no. 6, pp. 1376–1400, 2010. https://doi.org/10.1016/j.jde.2009.11.024
V. V. Zhikov, ”On Lavrentiev’s phenomen”, Russian Journal of Mathematical Physics, vol. 3, no. 2, pp. 249-269, 1995.
V. V. Zhikov, ”On the density of smooth functions in Sobolev-Orlicz spaces”, Zapiski naučnyh seminarov Leningradskogo otdeleniâ ordena Lenina matematičeskogo instituta im. V.A. Steklova Akademii nauk SSSR, vol. 310, pp. 67-81, 2004.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Mustapha Ait Hammou, Elhoussine Azroul, Badr Lahmi
This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.