Bounds on linear codes capable of detecting, locating and correcting of repeated burst errors prevailing in multiple sub-blocks

DOI:

https://doi.org/10.22199/issn.0717-6279-2020-06-0094

Keywords:

Syndromes, Parity check matrix, Bound, Burst, Repeated burst

Abstract

Linear codes are presented that can detect, locate and correct all repeated burst errors of length b or less which occur in multiple sub-blocks. We obtain lower and upper bounds on the number of check digits for the existence of these codes. Three examples, one for each type of code, are provided.

References

[1] L. Berardi, B. K. Dass, and R. Verma, “On 2-repeated burst error detecting linear codes”, Journal of statistical theory and practice, vol. 3, no. 2, pp. 381-391, Jun.2009, doi: 10.1080/15598608.2009.10411931
[2] P. K. Das, “Location of multiple sub-blocks with burst errors”, Electronic notes in discrete mathematics, vol. 63, pp. 117-123, Dec. 2017, doi: 10.1016/j.endm.2017.11.006
[3] P. K. Das, “Codes detecting, locating and correcting random errors occurring in multiple sub-blocks”, Proyecciones (Antofagasta. En línea), vol. 38, no. 1, pp. 129-144, Mar. 2019, doi: 10.4067/S0716-09172019000100129
[4] P. K. Das and L. K. Vashisht, “Error locating codes by using blockwisetensor product of blockwise detecting/correcting codes”, Khayyam journal of mathematics, vol. 2, no. 1, pp. 6-17, 2016, doi: 10.22034/KJM.2016.14572
[5] B. K. Dass and R. Verma, “Repeated burst error correcting linear codes”, Asian-european journal of mathematics, vol. 1, no. 3, pp. 303-335, 2008, doi: 10.1142/S1793557108000278
[6] B. K. Dass and R. Verma, “Repeated burst error detecting linear codes”, Ratio mathematica, vol. 19, pp. 25-30, 2009. [On line]. Available: https://bit.ly/3eosbVj
[7] B. K. Dass and S. Madan, “Blockwise repeated burst error correcting linear codes”, Ratio mathematica, vol. 20, pp. 97-126, 2010. [On line]. Available: https://bit.ly/3eqLqxf
[8] B. K. Dass and S. Madan, “Repeated burst error locating linear codes”, Discrete mathematics, algorithms and applications, vol. 2, no. 2, pp. 181-188, 2010, doi: 10.1142/S1793830910000553
[9] P. Fire, "A class of multiple-error-correction binary codes for nonindependent errors", Thesis Engineer, Stanford University, Dept. of Electrical Engineering., 1959.
[10] W. W. Peterson and E. J. Weldon, Error correcting codes, 2nd ed. Cambridge, MA: MIT Press, 1972.
[11] G. E. Sacks, “Multiple error correction by means of parity-checks”, IRE transactions on information theory, vol. 4, no. 4, pp. 145-147, Dec. 1958, doi: 10.1109/IRETIT.1958.6741947
[12] J. K. Wolf, “On an extended class of error-locating codes”, Information and control, vol. 8, no. 2, pp. 163-169, Apr.1965, doi: 10.1016/S0019-9958(65)90066-5
[13] J. K. Wolf and B. Elspas, "Error-locating codes--A new concept in error control", IEEE transactions on information theory, vol. 9, no. 2, pp. 113-117, Apr.1963, doi: 10.1109/TIT.1963.1057813
[14] J. M. Wozencraft, “Sequential decoding for reliable communication”, IRE National Convention Record, vol. 5, no. 2, pp. 11-25, 1957.

Published

2020-11-12 — Updated on 2020-11-19

How to Cite

[1]
“Bounds on linear codes capable of detecting, locating and correcting of repeated burst errors prevailing in multiple sub-blocks”, Proyecciones (Antofagasta, On line), vol. 39, no. 6, pp. 1577-1596, Nov. 2020.

Issue

Section

Artículos