New inequalities for strongly exponentially generalized functions with applications

Authors

  • Artion Kashuri University Ismail Qemali.
  • Rozana Liko University Ismail Qemali.

DOI:

https://doi.org/10.22199/issn.0717-6279-3641

Keywords:

Trapezium-type integral inequalities, preinvexity, exponential convex function, general fractional integrals

Abstract

The aim of this paper is to introduce a new class of functions called strongly exponentially generalized $(m,\nu_{1},\nu_{2},g_{1},g_{2})$.
Some new integral inequalities of trapezium-type for strongly exponentially generalized $(m,\nu_{1},\nu_{2},g_{1},g_{2})$ functions with modulus $c$ via Riemann-Liouville fractional integral are established. Also, some new estimates with respect to trapezium-type integral inequalities for strongly exponentially generalized $(m,\nu_{1},\nu_{2},g_{1},g_{2})$ functions with modulus $c$ via general fractional integrals are obtained. We show that the strongly exponentially generalized $(m,\nu_{1},\nu_{2},g_{1},g_{2})$ functions with modulus $c$ includes several other classes of functions. At the end, some new error estimates for trapezoidal quadrature formula are provided as well. This results may stimulate further research in different areas of pure and applied sciences.

Downloads

Download data is not yet available.

Author Biographies

  • Artion Kashuri, University Ismail Qemali.

    Department of Mathematics, Faculty of Technical Science.

  • Rozana Liko, University Ismail Qemali.

    Department of Mathematics, Faculty of Technical Science.

References

G. Alirezaei and R. Mathar, “On exponentially concave functions and their impact in information theory”, 2018 Information Theory and Applications Workshop (ITA), 2018. https://doi.org/10.1109/ita.2018.8503202

T. Antczak, “(p, r)-invex sets and functions”, Journal of mathematical analysis and applications, vol. 263, no. 2, pp. 355–379, 2001. https://doi.org/10.1006/jmaa.2001.7574

T. Antczak, “Mean value in invexity analysis”, Nonlinear analysis: theory, methods and applications, vol. 60, no. 8, pp. 1473–1484, 2005. https://doi.org/10.1016/j.na.2004.11.005

S. M. Aslani, M. R. Delavar and S. M. Vaezpour, “Inequalities of fejer type related to generalized convex functions”, International journal of analysis and applications, vol. 16, no. 1, pp. 38-49, 2018. https://doi.org/10.28924/2291-8639-16-2018-38

M. U. Awan, M. A. Noor, and K. I. Noor, “Hermite-Hadamard inequalities for exponentially convex functions”, Applied mathematics and information sciences, vol. 12, no. 2, pp. 405–409, 2018. https://doi.org/10.18576/amis/120215

F. X. Chen and S. H. Wu, “Several complementary inequalities to inequalities of Hermite-Hadamard type for S-convex functions”, Journal of nonlinear sciences and applications, vol. 9, no. 2, pp. 705–716, 2016. https://doi.org/10.22436/jnsa.009.02.32

Y.-M. Chu, M. A. Khan, T. U. Khan, and T. Ali, “Generalizations of hermite-hadamard type inequalities for MT-convex functions”, Journal of nonlinear sciences and applications, vol. 09, no. 06, pp. 4305–4316, 2016. https://doi.org/10.22436/jnsa.009.06.72

M. Rostamian Delavar and M. De La Sen, “Some generalizations of hermite–hadamard type inequalities”, SpringerPlus, vol. 5, no. 1, 2016. https://doi.org/10.1186/s40064-016-3301-3

S. S. Dragomir, “On some new inequalities of Hermite-Hadamard type for m -convex functions”, Tamkang journal of mathematics, vol. 33, no. 1, pp. 45–56, 2002. https://doi.org/10.5556/j.tkjm.33.2002.304

T. S. Du, M. U. Awan, A. Kashuri, and S. Zhao, “Some K-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity”, Applicable analysis, vol. 100, no. 3, pp. 642–662, 2019. https://doi.org/10.1080/00036811.2019.1616083

T.-S. Du, J.-G. Liao, and Y.-J. Li, “Properties and integral inequalities of hadamard- Simpson type for the generalized (s, m) -preinvex functions”, Journal of nonlinear sciences and applications, vol. 9, no. 5, pp. 3112–3126, 2016. https://doi.org/10.22436/jnsa.009.05.102

M. Jleli, “On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function”, Journal of nonlinear sciences and applications, vol. 9, no. 3, pp. 1252–1260, 2016. https://doi.org/10.22436/jnsa.009.03.50

J. Hristov, “Response functions in linear viscoelastic constitutive equations and related fractional operators”, Mathematical modelling of natural phenomena, vol. 14, no. 3, pp. 1-34, 2019. https://doi.org/10.1051/mmnp/2018067

U. N. Katugampola, “New approach to a generalized fractional integral”, Applied mathematics and computation, vol. 218, no. 3, pp. 860–865, 2011. https://doi.org/10.1016/j.amc.2011.03.062

A. Kashuri and R. Liko, “Some new Hermite-Hadamard type inequalities and their applications”, Studia scientiarum mathematicarum hungarica, vol. 56, no. 1, pp. 103–142, 2019. https://doi.org/10.1556/012.2019.56.1.1418

T. Lara, N. Merentes, R. Quintero and E. Rosales, “On strongly m-convex functions”, Mathematica aeterna, vol. 5, no. 3, pp. 521-535, 2015.

T. Lara, N. Merentes, R. Quintero and E. Rosales, “On inequalities of Fejer and Hermite-Hadamard types for strongly m-convex functions”, Mathematica aeterna, vol. 5, no. 5, pp. 777-793, 2015.

W. Liu, W. Wen, and J. Park, “Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals”, Journal of nonlinear sciences and applications, vol. 9, no. 3, pp. 766–777, 2016. https://doi.org/10.22436/jnsa.009.03.05

C. Luo, T. S. Du, M. A. Khan, A. Kashuri and Y. Shen, “Some k-fractional integrals inequalities through generalized λφm-MT-preinvexity”, Journal of computational analysis and applications, vol. 27, no. 4, pp. 690-705, 2019.

M. Matłoka, “Inequalities for H-preinvex functions”, Applied mathematics and computation, vol. 234, pp. 52–57, 2014. https://doi.org/10.1016/j.amc.2014.02.030

M. V. Mihai, “Some Hermite-Hadamard type inequalities obtain via Riemann-Liouville fractional calculus”, Tamkang journal of mathematics, vol. 44, no. 4, pp. 411–416, 2013. https://doi.org/10.5556/j.tkjm.44.2013.1218

M. Matłoka, “Inequalities for H-preinvex functions”, Applied mathematics and computation, vol. 234, pp. 52–57, 2014. https://doi.org/10.1016/j.amc.2014.02.030

M. V. Mihai, “Some Hermite-Hadamard type inequalities obtain via Riemann-Liouville fractional calculus”, Tamkang journal of mathematics, vol. 44, no. 4, pp. 411–416, 2013. https://doi.org/10.5556/j.tkjm.44.2013.1218

K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.

M. A. Noor, “Some new classes of non convex functions”, Nonlinear functional analysis and applications, vol. 11, no. 1, pp. 165-171, 2006.

M. A. Noor and K. I. Noor, “Strongly exponentially convex functions and their properties”, Journal of advanced mathematical studies, vol. 12, no. 2, pp. 177-185, 2019. [On line]. Available: https://bit.ly/3Kv8ue3

M. A. Noor and K. I. Noor, “Strongly exponentially convex functions”, UPB scientific bulletin, series a: applied mathematics and physics, vol. 81, no. 4, 2019. [On line]. Available: https://bit.ly/3fNAXO4

M. A. Noor and K. I. Noor, “Exponential convex functions”, Preprint.

M. A. Noor and K. I. Noor and S. Rashid, “Fractal exponential convex functions and inequalities”, Preprint.

M. A. Noor and K. I. Noor and S. Rashid, “Exponential r-convex functions and inequalities”, Preprint.

O. Omotoyinbo and A. Mogbodemu, “Some new Hermite-Hadamard integral inequalities for convex functions”, International journals of science and innovation technology, vol. 1, no. 1, pp. 1-12, 2014.

M. E. Özdemir, S. S. Ragomir, and Ç. Yildiz, “The Hadamard inequality for convex function via fractional integrals”, Acta mathematica scientia, vol. 33, no. 5, pp. 1293-1299, 2013. https:/doi.org/10.1016/S0252-9602(13)60081-8

J. Pečarić and J. Jakšetić, “Exponential convexity, Euler-Radau expansions and stolarsky means”, Rad Hrvatske akademije znanosti i umjetnosti : Matematičke znanosti, vol. 515, pp. 81-94, 2013. [On line]. Available: https://bit.ly/35dJEiE

C. Peng, C. Zhou, C. and T. S. Du, “Riemann-Liouville fractional Simpson’s inequalities through generalized (m, h1, h2)-preinvexity”, Italian journal of pure and applied mathematic, vol. 38, pp. 345-367, 2017. [On line]. Available: https://bit.ly/3Iu1Ym6

R. K. Raina, “On generalized Wright’s hypergeometric functions and fractional calculus operators”, East asian mathematics journal, vol. 21, no. 2, pp. 191-203, 2005. [On line]. Available: https://bit.ly/3AiV1kQ

S. Rashid, M. A. Noor, and K. I. Noor, “Fractional exponentially m- convex functions and inequalities”, International Journal of Analysis and Applications, vol. 17, no. 3, pp. 464-478, 2019.

M. A. F. dos Santos, “Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting”, Physics, vol. 1, no. 1, pp. 40-58, 2019. https://doi.org/10.3390/physics1010005

M. Z. Sarikaya and F. Ertuğral, “On the generalized Hermite- Hadamard inequalities”, Annals of the University of Craiova, Mathematics and Computer Science Series, vol. 47, no. 1, pp. 193-213. [On line]. Available: https://bit.ly/3Ax1Dfs

M. Z. Sarikaya and H. Yildirim, “On generalization of the Riesz potential”, Indian journal of mathematical sciences, vol. 3, no. 2, pp. 231-235, 2007.

H. Wang, T. S. Du and Y. Zhang, “k-fractional integral trapezium- like inequalities through (h, m)-convex and (α, m)-convex mappings”, Journal of Inequalities and Applications, vol. 2017, Art. ID. 311, 2017. https://doi.org/10.1186/s13660-017-1586-6

Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, and A. Kashuri, “Extensions of different type parameterized inequalities for generalized (m, h)- preinvex mappings via k-fractional integrals”, Journal of inequalities and applications, vol. 2018, Art. ID. 49, 2018. https://doi.org/10.1186/s13660-018-1639-5

Downloads

Published

2022-01-28

Issue

Section

Artículos

How to Cite

[1]
“New inequalities for strongly exponentially generalized functions with applications”, Proyecciones (Antofagasta, On line), vol. 41, no. 1, pp. 275–300, Jan. 2022, doi: 10.22199/issn.0717-6279-3641.