Nonlinear maps preserving certain subspaces.
Keywords:
Kernel operator, Nonlinear preservers problem, Range operatorAbstract
Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators on X. We characterise surjective (not necessarily linear or additive) maps ϕ : B(X) → B(X) such that F(ϕ (A)◇ ϕ (B)) = F(A ◇ B) for all A,B ∈ B(X) where F(A) denotes any of R(A) or N(A), anda ◇ B denotes any binary operations A−B, AB and ABA for all A,B ∈B(X).References
H. Benbouziane, Y. Bouramdane, M. Ech-Cherif El Kettani, A. Lahssaini: Nonlinear commutant preservers, Linear and Multilinear Algebra 463 No.3, pp. 593-601, (2018).
A. Bourhim, J. Mashreghi and A. Stepanyan, Nonlinear maps preserving the minimum and surjectivity moduli, Linear Algebra Appl. 463, pp. 171-189, (2014).
J. Cui, J. Hou, Additive maps on standard operator algebras preserving invertibilities or zero divisors, Linear Algebra Appl. 359, pp. 219-233, (2003).
J. Cui, J. Hou, Maps leaving functional values of operator products invariant, Linear Algebra Appl. 428, pp. 1649-1663, (2008).
G. Doboviek, B. Kuzma, G. Lenjak, C. K. Li, T. Petek, Mappings that preserve pairs of operators with zero triple Jordan product, Linear Algebra Appl. 426, pp. 255-279, (2007).
M. Elhodaibi and A. Jaatit, On Additive maps preserving the hyperrange or hper-kernel of operators, Int. Math. Forum 7 No. 25-28, pp. 1223-1231, (2012).
G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineaire Substitusionen,Sitzungsber, Deutsch. Akad. Wiss. Berling(1897),171-172.
M. Oudghiri, Additive mappings preserving the kernel or the range of operators, Extracta Math. 24, pp. 251-258, (2009).
P. Šemrl, Two characterizations of automorphisms on B(X), Studia Math. 150, pp. 143-149, (1993).