Equi independent equitable dominating sets in graphs
DOI:
https://doi.org/10.4067/S0716-09172016000100003Keywords:
Equi independent equitable domination number, equitable domination number, domination number, número de dominación equi-independiente y equitativo, número de dominación equitativo, número de dominación.Abstract
We introduce the concept of an equi independent equitable dominating set and define equi independent equitable domination number. We also investigate the graph families whose equi independent equitable domination number and equitable domination number are same.Downloads
Download data is not yet available.
References
[1] C. Berge, Theory of Graphs and its Applications, Methuen, London, (1962).
[2] E. J. Cockayne and S.T. Hedetniemi, Independence graphs, Congr. Numer., X, pp. 471-491, (1974).
[3] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7, pp. 247-261, (1977).
[4] W. Goddard and M. A. Henning, Independent domination in graphs: A survey and recent results, Discrete Mathematics, 313, pp. 839-854, (2013).
[5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, (1998).
[6] O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38, pp. 206-212, (1962).
[7] V.Swaminathan and K. Dharmalingam, Degree equitable domination on graphs, Kragujevac Journal of Mathematics, 35(1), pp. 191-197, (2011).
[8] S. K. Vaidya and N. J. Kothari, Some Results on Equi Independent Equitable Dominating Sets in Graphs, Journal of Scientific Research, 7(3), pp. 77-85, (2015).44 S. K. Vaidya and N. J. Kothari
[9] S. K. Vaidya and N. J. Kothari, On equi independent equitable dominating sets in graphs, International Journal of Mathematics and Soft
Computing, 6 (1), pp. 133-142, (2016).
[10] S. K. Vaidya and N. J. Kothari, Equi independent equitable domination number of cycle and bistar related graphs, IOSR Journal of Mathematics, 11 (6), pp. 26-32, (2015).
[11] D. B.West, Introduction to graph theory, 2nd ed., Prentice-Hall, New Delhi, India, (2003).
[2] E. J. Cockayne and S.T. Hedetniemi, Independence graphs, Congr. Numer., X, pp. 471-491, (1974).
[3] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7, pp. 247-261, (1977).
[4] W. Goddard and M. A. Henning, Independent domination in graphs: A survey and recent results, Discrete Mathematics, 313, pp. 839-854, (2013).
[5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, (1998).
[6] O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38, pp. 206-212, (1962).
[7] V.Swaminathan and K. Dharmalingam, Degree equitable domination on graphs, Kragujevac Journal of Mathematics, 35(1), pp. 191-197, (2011).
[8] S. K. Vaidya and N. J. Kothari, Some Results on Equi Independent Equitable Dominating Sets in Graphs, Journal of Scientific Research, 7(3), pp. 77-85, (2015).44 S. K. Vaidya and N. J. Kothari
[9] S. K. Vaidya and N. J. Kothari, On equi independent equitable dominating sets in graphs, International Journal of Mathematics and Soft
Computing, 6 (1), pp. 133-142, (2016).
[10] S. K. Vaidya and N. J. Kothari, Equi independent equitable domination number of cycle and bistar related graphs, IOSR Journal of Mathematics, 11 (6), pp. 26-32, (2015).
[11] D. B.West, Introduction to graph theory, 2nd ed., Prentice-Hall, New Delhi, India, (2003).
Downloads
Published
2017-03-23
Issue
Section
Artículos
License
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
[1]
“Equi independent equitable dominating sets in graphs”, Proyecciones (Antofagasta, On line), vol. 35, no. 1, pp. 33–44, Mar. 2017, doi: 10.4067/S0716-09172016000100003.