Hyperstability of cubic functional equation in ultrametric spaces

  • Youssef Aribou Ibn Tofail University.
  • Muaadh Almahalebi Ibn Tofail University.
  • Samir Kabbaj Ibn Tofail University.

Resumen

In this paper, we present the hyperstability results of cubic functional equations in ultrametric Banach spaces.

Biografía del autor

Youssef Aribou, Ibn Tofail University.
Department of Mathematics, Faculty of Sciences.
Muaadh Almahalebi, Ibn Tofail University.
Department of Mathematics, Faculty of Sciences.
Samir Kabbaj, Ibn Tofail University.
Department of Mathematics, Faculty of Sciences.

Citas

[1] M. Almahalebi, A. Charifi and S. Kabbaj, Hyperstability of a monomial functional equation, Journal of Scientific Research Reports, 3 (20), pp. 2685-2693, (2014).

[2] M. Almahalebi and S. Kabbaj, Hyperstability of Cauchy-Jensen type functional equation, Advances in Research, 2 (12), pp. 1017-1025, (2014).

[3] M. Almahalebi and C. Park, On the hyperstablity of a functional equa- tion in commutative groups, Journal of Computational Analysis and Applications, 20 (5) (2016), pp. 826-833, (2016).

[4] M. Almahalebi, A. Charifi and S. Kabbaj, Hyperstability of a Cauchy functional equation, Journal of Nonlinear Analysis and Optimization: Theory & Applications, (In press).

[5] M. Almahalebi, On the hyperstability of σ-Drygas functional equation on semigroups, Aequationes math., 90 4, pp. 849-857, (2016).

[6] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2, pp. 64-66, (1950).

[7] A. Bahyrycz, J. Brzd¸ek and M. Piszczek, On approximately p-Wright afine functions in ultrametric spaces, J. Funct. Spaces Appl., Art. ID 723545, (2013).

[8] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation,ActaMath.Hungar.,142, pp. 353-365, (2014).

[9] A. Bahyrycz and J. Olko, Stability of the equation of (p,q)-Wright functions,ActaMath.Hung.,146, pp. 71-85, (2015).

[10] A. Bahyrycz and J. Olko, On stability of the general linear equation, Aequationes Math., 89, pp. 1461-1474, (2015).

[11] D. G. Bourgin, Approximately isometric and multiplicative transfor- mations on continuous function rings, Duke Math. J. 16, pp. 385-397, (1949).

[12] J. Brzd¸ek, J. Chudziak and Zs. P´ales, A fixed point approach to stability of functional equations, Nonlinear Anal., 74, pp. 6728-6732, (2011).

[13] J. Brzd¸ek and K. Cieplinski, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Analysis 74, pp. 6861-6867, (2011).

[14] J. Brzd¸ek, Stability of additivity and fixed point methods, Fixed Point Theory and App., pp. 2013:285, 9 pages, (2013).

[15] J. Brzd¸ek, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar., 141, pp. 58-67, (2013).

[16] J. Brzd¸ek, Remarks on hyperstability of the Cauchy functional equa- tion, Aequationes Math., 86, pp. 255-267, (2013).

[17] J. Brzd¸ek, A hyperstability result for the Cauchy equation,Bull.Aust. Math. Soc., 89, pp. 33-40, (2014).

[18] J. Brzd¸ek and K. Cieplinski, Hyperstability and superstability,Abs. Appl. Anal., 2013, Article ID 401756, 13, (2013).

[19] J. Erdos, A remark on the paper On some functional equations by S. Kurepa, Glasnik Mat.-Fiz. Astronom., 14, pp. 3-5, (1959).

[20] P. Gavrut¸a, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184, pp. 431- 436, (1994).

[21] E. Gselmann, Hyperstability of a functional equation, Acta Math. Hun- gar., 124, pp. 179-188, (2009).

[22] D. H. Hyers, On the stability of the linear functional equation,Proc. Natl. Acad. Sci. U.S.A., 27, pp. 222-224, (1941).

[23] B. Jessen, J. Karpf and A. Thorup, Some functional equations in groups and rings, Math. Scand., 22, pp. 257-265, (1968).

[24] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dy- namical Systemsand Biological Models. , Kluwer Academic Publishers, Dordrecht, (1997).

[25] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math., 17 (2), pp. 107-112, (2001).

[26] M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes math., 88 (1), pp. 163-168, (2014).

[27] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, pp. 297-300, (1978).

[28] M. Sirouni and S. Kabbaj, A fixed point approach to the hyperstability of Drygas functional equation in metric spaces.J.Math.Comput.Sci., 4 (4), pp. 705-715, (2014).

[29] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John- Wiley & Sons Inc. New York, (1964).

[30] D. Zhang, On Hyers-Ulam stability of generalized linear functional equation and its induced Hyers-Ulam programming problem,Aequa- tiones Math., 90, pp. 559-568, (2016).

[31] D. Zhang, On hyperstability of generalised linear functional equations in several variables, Bull. Aust. Math. Soc., 92, pp. 259-267, (2015).
Publicado
2017-10-20
Cómo citar
Aribou, Y., Almahalebi, M., & Kabbaj, S. (2017). Hyperstability of cubic functional equation in ultrametric spaces. Proyecciones. Journal of Mathematics, 36(3), 461-484. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2391
Sección
Artículos

Artículos más leídos del mismo autor/a

1 2 > >>