Subseries convergence in abstract duality pairs

Authors

  • Min Hyung Cho Kum-Oh National Institute of Tech.
  • Li Ronglu Harbin Institute of Technology.
  • Charles Swartz New Mexico State University.

DOI:

https://doi.org/10.4067/S0716-09172014000400007

Keywords:

Convergence series, vectorial spaces, Orlicz-Pettis theorem, abstract triples, series convergentes, espacios vectoriales, teorema de Orlicz-Pettis, triples abstractos.

Abstract

Let E, F be sets, G an Abelian topological group and b : ExF — G. Then (E, F, G) is called an abstract triple. Let w(F, E) be the weakest toplogy on F such that the maps {b(x, ·): x G E} from F into G are continuous. A subset B C F is w(F,E) sequentially conditionally compact if every sequence {yk} C B has a subsequence {ynk } such that limj; b(x, ynkexists for every x G E. It is shown that if a formal series in E is subseries convergent in the sense that for every subsequence {xnj} there is an element x G E such that Xj=! b(xnj ,y) = b(x,y) for every y G F ,then the series Xj=! b(xnj ,y) converge uniformly for y belonging to w(F, E) sequentially conditionally compact subsets ofF. This result is used to establish Orlicz-Pettis Theorems in locall convex and function spaces. Applications are also given to Uniform Boundedness Principles and continuity results for bilinear mappings.

Downloads

Download data is not yet available.

Author Biographies

  • Min Hyung Cho, Kum-Oh National Institute of Tech.
    Department of Mathematics.
  • Li Ronglu, Harbin Institute of Technology.
    Department of Mathematics.
  • Charles Swartz, New Mexico State University.
    Department of Mathematics.

References

[AB] P. Antosik, Z. Bu, R. Li, E. Pap and C. Swartz, K -convergent sequences in locally convex spaces, Generalized Functions and Convergence, World Scientific, Singapore, pp. 299-304, (1990).

[AS1] P. Antosik and C. Swartz, Matrix Methods in Analysis, SingerVerlag, Heidelberg, (1985).

[AS2] P. Antosik and C. Swartz, The Schur and Phillips Lemmas for Topological Groups, J. Math. Anal Appl., 98, pp. 179-187, (1984).

[B] B. Basit, On a Theorem of Gelfand and a new proof of the OrliczPettis Theorem, Rend. Inst. Matem. Univ. di Trieste, 18 (1986), pp. 159-162, (1986).

[BK] G. Bennett and N. Kalton, FK-spaces containing c0, Duke Math. J., 39, pp. 561-582, (1972).

[C] C. Constantinescu, On Nikodyms Boundedness Theorem, Libertas Math., 1, pp. 51-73, (1981).

[BCS] O. Blasco, J. M. Calabuig and T. Signes, A bilinear version of OrliczPettis Theorem, J. Math. Anal. Appl., 348, pp. 150-164, (2008).

[CL] A. Chen and R. Li, A version of Orlicz-Pettis Theorem for quasihomogeneous operator space, J. Math. Anal. Appl., 373, pp. 127-133, (2011).

[Diel] P. Dierolf, Theorems of Orlicz-Pettis type for locally convex spaces, Man. Math., 20, pp. 73-94, (1977).

[DF] J. Diestel and B. Faires, On Vector Measures, Trans. Amer. Math. Soc., 198, pp. 253-271, (1974).

[DU] J. Diestel and J. Uhl, Vector Measures, Amer. Math. Soc. Surveys #15, Providence, (1977).

[Di] N. Dinculeanu, Weak Compactness and Uniform Convergence of Operators in Spaces of Bochner Integrable Function, J. Math. Anal. Appl., 109 (1985).

[Dr] L. Drewnowski, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym Theorems, Bull. Aced. Polon. Sci., 20, pp. 725-731, (1972).

[DS] N. Dunford and J. Schwartz, Linear Operators, Interscience, N.Y., (1958).

[G] H. Garnir, M. DeWilde and J. Schmets, Analyse Fontionnelle I, Birkhauser, Basel, (1968).

[FL] W. Filter and I. Labuda, Essays on the Orlicz Theorem I, Real Anal. Exch., 16, pp. 393-403, (1990-1991).

[K2] N. Kalton, Subseries Convergence in Topological Groups and Vector Spaces, Israel J. Math., 10, pp. 402-412, (1971).

[K3] N. Kalton, Spaces of Compact Operators, Math. Ann., 208, pp. 267-278, (1974).

[Kh] S. M. Khaleelulla, Counter Examples in Topological Vector Spaces, Springer Lecture Notes in Mathematics 936, Heidelberg, (1982).

[LC] R.Li and M. Cho, A General Kalton-type Theorem, J. Harbin Inst. Tech 25, pp. 100-104, (1992).

[LS1] R. Li and C. Swartz, Spaces for which the Uniform Boundedness Principle Holds, Studia Sci. Math. Hungar., 27, pp. 379-384, (1992).

[LS2] R. Li and C. Swartz, A Nonlinear Schur Theorem, Acta Sci. Math. (Szged), 58, pp. 497-508, (1993).

[LS3] R. Li and C. Swartz, An Abstract Orlicz-Pettis Theorem and Applications, Proy. J. Math., 27, pp. 155-169, (2008).

[LT] J. Lindenstrauss and L. Tzarfriri, Classical Banach Spaces I, SpringerVerlag, Berlin, (1977).

[LW] R. Li and J. Wang, Invariants in Abstract Mappping Pairs, J. Aust. Math. Soc., 76, pp. 369-381, (2004).

[MO] S. Mazur and W. Orlicz, Uber Folgen linearen Operationen, Studia Math., 4, pp. 152-157, (1933).

[O] W. Orlicz, Beitrage zur Theorie der Orthogonalent Wichlungen II, Studia Math., 1, pp. 241-255, (1929).

[P] B. Pettis, On Integration in Vector Spaces, Trans. Amer. Math. Soc., 49, pp. 277-304, (1938).

[Pi] A. Pietsch, Nukleare Lokalconvexe Raume, Akademie Verlag, Berlin, (1965).

[MO] A. Mohsen, Weak*-Norm Sequentially Continuous Operators, Math. Slovaca, 50, pp. 357-363, (2000).

[R] A. Robertson, On unconditional convergence in topological vector spaces, Proc. Roy. Soc. Edinburgh, 68, pp. 145-157, (1969).

[Rol] S. Rolewicz, Metric Linear Spaces, Polish Sci. Publishers, Warsaw, (1984).

[St] W. Stiles, On subseries convergence in F-spaces, Israel J. Math., 8, pp. 53-56, (1970).

[Sw1] C. Swartz, An Introduction to Functional Analysis, Dekker, N.Y., (1992).

[Sw2] C. Swartz. A Generalized Orlicz-Pettis Theorem and Applications, Math. Z., 163, pp. 283-290, (1978).

[Sw3] C. Swartz, An Abstract Orlicz-Pettis Theorem, Bull. Pol. Acad. Sci. 32, pp. 433-437, (1984).

[Sw4] C. Swartz, A Generalization of Stiles Orlicz-Pettis Theorem, Rend. Inst. Matem Univ. di Trieste, 20, pp. 109-112, (1988).

[Sw5] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publ., Singapore, (1996).

[Sw6] C. Swartz, Multiplier Convergent Series, World Sci. Publ., Singapore, (2009).

[Sw7] C. Swartz. A Bilinear Orlicz-Pettis, Theorem, J. Math. Anal. Appl., 365, pp. 332-337, (2010).

[Th] G. Thomas, L’integration par rapport a une mesure de Radon vectorielle, Ann. Inst. Fourier, 20, pp. 55-191, (1970).

[Tw] I. Tweddle, Unconditional Convergence and Vector-Valued Measures, J. London Math. Soc., 2, pp. 603-610, (1970).

[We] H. Weber, Compactness in Spaces of Group-Valued Contents, the Vitali-Hahn-Saks Theorem and Nikodym Boundedness Theorem, Rocky. Mount. J. Math., 16, pp. 253-275, (1985).

[Wi] A. Wilansky, Modern Methods in Topological Vector Spaces, Mc Graw-Hill, N. Y. (1978).

[ZCL] F. Zheng, C. Cui, and R. Li, Abstract Gliding Hump Properties in the Vector-Valued Dual Pairs, Acta Anal. Functionalis Appl., 12, pp. 322-327, (2010).

Downloads

Published

2017-03-23

Issue

Section

Artículos

How to Cite

[1]
“Subseries convergence in abstract duality pairs”, Proyecciones (Antofagasta, On line), vol. 33, no. 4, pp. 447–470, Mar. 2017, doi: 10.4067/S0716-09172014000400007.