A gliding hump property and banach-mackey spaces


  • Charles Swartz New Mexico State University.




We consider the Banach–Mackey property for pairs of vector spaces E and E0 which are in duality. Let A be an algebra of sets and assume that P is an additive map from A into the projection operators on E. We define a continuous gliding hump property for the map P and show that pairs with this gliding hump property and another measure theoretic property are Banach-Mackey pairs, i. e., weakly bounded subsets of E are strongly bounded. Examples of vector valued function spaces, such as the space of Pettis integrable functions, which satisfy these conditions are given.

Author Biography

Charles Swartz, New Mexico State University.

Department of Mathematical Sciences.


[ B] S. Banach, Oeuvres II, PWN, Warsaw, (1979).

[ BF] J. Boos and D. Fleming, Gliding Hump Properties and Some Applications, Int. J. Math. Math. Sci., 18, pp. 121-132, (1995).

[ DFP] S. Díaz, M. Florencio and P. Paúl, A uniform boundedness theorem for L ? (µ, E), Arch. Math. (Basel), 60, pp. 73-78, (1993).

[ DFFP1] S. Díaz, A. Fernández, M. Florencio and P. Paúl, An abstract Banach-Steinhaus theorem and applications to function spaces, Resultate Math., 23, pp. 242-250, (1993).

[ DFFP2] S. Díaz, A. Fernández, M. Florencio and P. Paúl, A Wide Class of Ultrabornological Spaces of Measurable Functions, J. Math. Anal. Appl., 190, pp. 697-713, (1995).

[ Du] J. Diestel and J.J. Uhl, Vector Measures, Amer. Math. Soc., Surveys #15, Providence, (1977).

[ Do] I. Dobrakov, On Integration in Banach Spaces I, Czech. Math. J., 20, pp. 511-536, (1970).

[ DFP1] L. Drewnowski, M. Florencio, and P. Paúl, The Space of Pettis Integrable Functions is Barrelled, Proc. Amer. Math. Soc., 114, pp. 341-351, (1992).

[ DFP2] L. Drewnowski, M. Florencio and P. Paúl, Uniform boundedness of operators and barrelledness in spaces with Boolean algebras of projections, Atti. Sem. Mat. Fis., Univ. Modena XLI, pp. 317-329, (1993).

[ DS] N. Dunford and J. Schwartz, Linear Operators I, Interscience, N.Y., (1958).

[ FMP] M. Florencio, F. Mayoral and P. Paúl, Diedonné-Köthe Duality for Vector-Valued Function Spaces, Quaest. Math., 20, pp. 185-214, (1997).

[ FM] D. Fremlin and J. Mendoza, On the Integration of VectorValued Functions, Illinois J. Math., 38, pp. 127-147, (1994).

[ G] R. Gordan, The McShane Integral of Banach-Valued Functions, Illinois J. Math., 34, pp. 557-567, (1990).

[ Ha] H. Hahn, Uber Folgen linearen Operationen, Monatsch. für Math. und Phys., 32, pp. 1-88, (1922).

[ HT] E. Hellinger and O. Toeplitz, Gründlagen für eine Theorie den unendlichen Matrizen, Math. Ann., 69, pp. 289-330, (1910).

[ Hi] T.H. Hilldebrandt, On Uniform Limitedness of Sets of Functional Operations, Bull. Amer. Math. Soc., 29, pp. 309-315, (1923).

[ L] H. Lebesgue, Sur les intégrales sìnguliéres, Ann. de Toulouse, 1, pp. 25-117, (1909).

[ RR] K. P. S. Rao and M. Rao, Theory of Charges, Academic Press, N. Y., (1983).

[ Sch] J. Schur, Uber lineare Transformation in der Theorie die unendlichen Reihen, J. Reine Angew Math., 151, pp. 79-111, (1920).

[ Sw1] C. Swartz, An Introduction to Functional Analysis, Marcel Dekker, N.Y., (1992).

[ Sw2] C. Swartz, Measure, Integration and Functional Spaces, World Sci. Publ., Singapore, (1994).

[ Sw3] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publ., Singapore, (1996).

[ Sw4] C. Swartz, Beppo Levi’s Theorem for the Vector-Valued McShane Integral and Applications, Bull.Belgian Math. Soc., 4, pp. 589-599, (1997).

[ Sw5] C. Swartz, Topological Properties of the Space of Integrable Functions with respect to a Charge, Ricerche di Mat., to appear.

[ Sz] P. Szeptycki, Notes on integral transformations, Diss. Math., 231 (1984).

[ Wi] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).



How to Cite

C. Swartz, “A gliding hump property and banach-mackey spaces”, Proyecciones (Antofagasta, On line), vol. 20, no. 2, pp. 243-261, Apr. 2017.