On triple difference sequences of real numbers in probabilistic normed spaces


  • Binod Chandra Tripathy Institute of Advanced Study in Science and Technology.
  • Rupanjali Goswami Raha Higher Secondary School.




Triple sequence, t-norm, probabilistic norm, cluster point, difference operator, secuencia triple, norma t, norma probabilística, punto de cluster.


In this paper we define concept of triple Δ-statistical convergent sequences in probabilistic normed space and give some results. Also we introduce the notions of Δ-statistical limit point and Δ-statistical cluster point and investigate their different properties.

Author Biographies

Binod Chandra Tripathy, Institute of Advanced Study in Science and Technology.

Mathematical Science Division.

Rupanjali Goswami, Raha Higher Secondary School.

Department of Mathematics.


[1] A. Alotaibi, Generalized statistical convergence in probabilistic normed spaces, The Open Math. Jour.,1, pp. 82-88, (2008).

[2] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequat. Math., 46, pp. 91-98, (1993).

[3] C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208, pp. 446-452, (1997).

[4] J. S. Connor, The statistical and strong p-Cesaro convergence of sequences; Analysis, 8, pp. 47-63, (1988).

[5] G. Constantin and I. Istratescu, Elements of Probabilistic Analysis with Applications; vol.36 Mathematics and Its Applications (East European Series), Kluwer Academic Publishers, Dordrecht, Netherlands, (1989).

[6] A. Esi, The A-statistical and strongly (A — p)-Cesaro convergence of sequences, Pure Appl. Math. Sci., XLIII(1-2), pp. 89-93, (1996).

[7] A. Esi and M. K. Ozdemir, Generalized m-statistical convergence in probabilistic normed space, J. Comput. Anal. Appl., 13(5), pp. 923-932, (2011).

[8] A.Esi, Statistical convergence of triple sequences in topological groups, Annals Univ. Craiova, Math. Comput. Sci. Ser., 40(1), pp. 29-33, (2013).

[9] H. Fast, Sur la convergence statistique, Colloq. Math., 2, pp. 241-244, (1995).

[10] J. A. Fridy, On statistical convergence, Analysis, 5, pp. 301-313, (1985).

[11] S. Karakus, Statistical convergence on probabilistic normed space, Math. Commun., 12, pp. 11-23, (2007).

[12] S. Karakus and K. Demirci, Statistical convergence of double sequences on probabilistic normed spaces, Int. J. Math. Math. Sci., (2007), 11 pages, (2007).

[13] E. Kolk, Statistically convergent sequences in normed spaces, Tartu, pp. 63-66, (1988).

[14] B. Lafuerza-Guillen, J. Lallena and C. Sempi, Some classes of probabilistic normed spaces, Rend. Mat. Appl., 17(7), pp. 237-252, (1997).

[15] B. Lafuerza-Guillen, J. Lallena and C. Sempi, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232, pp. 183-196, (1999).

[16] B. Lafuerza-Guillen and C. Sempi, Probabilistic norms and convergence of random variables, J. Math. Anal. Appl., 280, pp. 9-16, (2003).

[17] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Camb. Phil. Soc., 104, pp. 141-145, (1988).

[18] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences of the United States of America, 28(12), pp. 535-537, (1942).

[19] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Anna., 53, pp. 289-321, (1900).

[20] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30, pp. 139-150, (1980).

[21] E. Savas and A. Esi, Statistical convergence of triple sequences on probabilistic normed space, Annals Univ. Craiova, Math. Comput. Sci. Ser., 39(2), pp. 226-236, (2012).

[22] E. Savas and M. Mursaleen, On statistically convergent double sequences of fuzzy numbers, Inform. Sci., 162(3-4), pp. 183-192, (2004).

[23] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY,USA, (1983).

[24] B. Schweizer and A. Sklar, Statistical metric spaces, Pacic Jour. Math., 10, pp. 313-334, (1960).

[25] A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR, 149, pp. 280-283, (1963).

[26] B. C. Tripathy, Statistically convergent double sequences, Tamkang Jour. Math., 34(3), pp. 231-237, (2003).

[27] B.C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math.,35(5), pp. 655-663, (2004).

[28] B.C. Tripathy and A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50(4), pp. 565-574, (2010).

[29] B.C. Tripathy, A. Baruah, M.Et and M. Gungor, On almost statistical convergence of new type of generalized difference sequence of fuzzy numbers, Iranian Jour. Sci. Tech., Trans. A : Sci., 36(2), pp. 147-155, (2012).

[30] B.C. Tripathy and S. Borgogain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz function, Advances Fuzzy Syst., 2011, Article ID216414, 6 pages, (2011).

[31] B.C. Tripathy and S. Debnath, On generalized difference sequence spaces of fuzzy numbers, Acta Scientiarum Technology, 35(1), pp. 117-121, (2013).

[32] B.C. Tripathy and H. Dutta, On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δnm-statistical convergence, Anal. Stiintifice ale Universitatii Ovidius, Seria Mat., 20(1), pp. 417-430, (2012).

[33] B.C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sinica(Eng. Ser.), 24(5), pp. 737-742, (2008).

[34] B.C. Tripathy, M. Sen and S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., 16, pp. 1021-1027, (2012) DOI 10.1007/s00500-011-0799-8.



How to Cite

B. C. Tripathy and R. Goswami, “On triple difference sequences of real numbers in probabilistic normed spaces”, Proyecciones (Antofagasta, On line), vol. 33, no. 2, pp. 157-174, Mar. 2017.




Most read articles by the same author(s)

1 2 > >>