# Radius problem for the class of analytic functions based on Ruscheweyh derivative

## DOI:

https://doi.org/10.22199/issn.0717-6279-2019-03-0034## Keywords:

Analytic function, Univalent function, Ruscheweyh derivative, Cauchy-Schwarz inequality, Radius problema, Hölder inequality## Abstract

Let ???? be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)?1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass ????(?1, ?2, ?3, ?4; ?) of f(z) ? ???? satisfying the inequality for some complex numbers ?1, ?2, ?3, ?4 and for some real ? > 0 is introduced. The object of the present paper is to obtain some properties of the function class ???? (?1, ?2, ?3, ?4; ?). Also the radius problems of satisfies the condition is considered.## References

O. Kwon, Y. Sim, N. Cho, and H. Srivastava, “Some radius problems related to a certain subclass of analytic functions”, Acta Mathematica Sinica, English Series, vol. 30, no. 7, pp. 1133–1144, Jul. 2014, doi: 10.1007/s10114-014-3100-0.

S. Maharana, J. Prajapat, and H. Srivastava, “The radius of convexity of partial sums of convex functions in one direction”, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, vol. 87, no. 2, pp. 215–219, Feb. 2017, doi: 10.1007/s40010-017-0348-7.

S. Ruscheweyh, “New criteria for univalent functions”, Proceedings of the American Mathematical Society, vol. 49, no. 1, pp. 109–109, Jan. 1975, doi: 10.1090/S0002-9939-1975-0367176-1.

H. Silverman, “Univalent functions with negative coefficients”, Proceedings of the American Mathematical Society, vol. 51, no. 1, pp. 109–109, Jan. 1975, doi: 10.1090/S0002-9939-1975-0369678-0.

H. Srivastava, N. Xu, and D. Yang, “Inclusion relations and convolution properties of a certain class of analytic functions associated with the Ruscheweyh derivatives”, Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp. 686–700, Jul. 2007, doi: 10.1016/j.jmaa.2006.09.019.

N. Uyanìk, S. Owa, and E. Kadioǧlu, “Some properties of functions associated with close-to-convex and starlike of order”, Applied Mathematics and Computation, vol. 216, no. 2, pp. 381–387, Mar. 2010, doi: 10.1016/j.amc.2010.01.022.

N. Uyanìk and S. Owa, “New extensions for classes of analytic functions associated with close-to-convex and starlike of order α”, Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 359–366, Jul. 2011, doi: 10.1016/j.mcm.2011.02.020.

## Published

## How to Cite

*Proyecciones (Antofagasta, On line)*, vol. 38, no. 3, pp. 537-551, Aug. 2019.