3-difference cordiality of some corona graphs.

Resumen

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.

Biografía del autor

R. Ponraj, Sri Paramakalyani College.
Department of Mathematics .
M. Maria Adaickalam, District Statistical office.
Department of Economics and Statistics.
R. Kala, Manonmaniam Sundaranar University.
Department of Mathematics.

Citas

Cahit.I, Cordial graph: a weaker version of graceful and harmonious graph, Ars Combinatoria, 23, pp. 201-207, (1987).

J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016). #Ds6.

F. Harary, Graph theory, Addision wesley, New Delhi (1969).

R. Ponraj, S. Sathish Narayanan and R.Kala, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences: Theory and Practical, 5, pp. 185-196, (2013).

R. Ponraj, M. Maria Adaickalam and R.Kala, k-difference cordial labeling of graphs, International journal of mathematical combinatorics, 2, pp. 121-131, (2016).

R. Ponraj, M. Maria Adaickalam, 3-difference cordial labeling of some union of graphs, Palestine journal of mathematics, 6 (1), pp. 202-210, (2017).

R. Ponraj, M. Maria Adaickalam, 3-difference cordial labeling of cycle related graphs, Journal of algorithms and computation, 47, pp. 1-10, (2016).

R. Ponraj, M. Maria Adaickalam, 3-difference cordiality of some graphs, Palestine journal of mathematics, 2, pp. 141-148, (2017).

R. Ponraj, M. Maria Adaickalam, 3-difference cordial labeling of corona related graphs, (communicated).

R. Ponraj, M. Maria Adaickalam, and R.Kala, 3-difference cordial labeling of some path related graphs, (communicated).

M. A.Seoud and Shakir M. Salman, On difference cordial graphs, Mathematica Aeterna, 5, No. 1, pp. 105-124, (2015).

Publicado
2019-02-25
Cómo citar
Ponraj, R., Adaickalam, M., & Kala, R. (2019). 3-difference cordiality of some corona graphs. Proyecciones. Revista De Matemática, 38(1), 83-96. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/3413
Sección
Artículos