On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences

  • Ayhan Esi Adiyaman University.
  • N. Subramanian SASTRA University.
  • Ayten Esi Adiyaman University.
Palabras clave: Triple sequences, rough convergence, closed and convex, cluster points and rough limit points, Bernstein polynomials, pre-Cauchy sequences

Resumen

We introduce and study some basic properties of rough I- convergentpre-Cauchy sequences of triple sequence of Bernstein polynomials and also study the set of all rough I- limits of a pre-Cauchy sequence of triple sequence of Bernstein polynomials and relation between analytic ness and rough I- statistical convergence of pre-Cauchy sequence of a triple sequences of Bernstein polynomials .

Biografía del autor

Ayhan Esi, Adiyaman University.
Department of Mathematics.
N. Subramanian, SASTRA University.
Department of Mathematics.
Ayten Esi, Adiyaman University.
Department of Mathematics.

Citas

[1] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz, 29(3-4), pp. 291-303, (2008).

[2] S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz, 29 (3-4), pp. 283-290, (2008).

[3] A. Esi , On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1 (2), pp. 16-25, (2014).

[4] A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2 (1), pp. 6-10, (2014).

[5] A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl.Math.and Inf.Sci., 9 (5), pp. 2529-2534, (2015).

[6] S. Araci and M. Acikgoz, Statistical Convergence of Bernstein Operators, Appl.Math.and Inf.Sci., 10 (6), pp. 2083-2086, (2016).

[7] A. J. Dutta, A. Esi and B.C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function ,Journal of Mathematical Analysis, 4 (2), pp. 16-22, (2013).

[8] S. Debnath, B. Sarma and B.C. Das, Some generalized triple sequence spaces of real numbers, Journal of nonlinear analysis and optimization, Vol. 6, No. 1, pp. 71-79, (2015).

[9] E. Dündar, C. Cakan, Rough I- convergence, Demonstratio Mathematica, Accepted.

[10] H.X. Phu, Rough convergence in normed linear spaces , Numer. Funct. Anal. Optimiz, 22, pp. 199-222, (2001).

[11] H.X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz, 23, pp. 139-146, (2002).

[12]H.X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz, 24, pp. 285-301, (2003).

[13] A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8 No. (2), pp. 49-55, (2007).

[14] A. Sahiner, B.C. Tripathy , Some I related properties of triple sequences, Selcuk J. Appl. Math., 9 No. (2), pp. 9-18, (2008).

[15] N. Subramanian and A. Esi, The generalized tripled difference of χ3 sequence spaces, Global Journal of Mathematical Analysis, 3 (2), pp. 54-60, (2015).

[16] B. C. Tripathy and R. Goswami, Vector valued multiple sequences defined by Orlicz functions, Boletim da Sociedade Paranaense de Matematica, 33 (1), pp. 76-79, (2015).

[17] B. C. Tripathy and R.Goswami, Multiple sequences in probabilistic normed spaces, Afrika Matematika, 26 (5-6), pp. 753-760, (2015).

[18] B. C. Tripathy and R.Goswami, Fuzzy real valued p-absolutely summmable multiple sequences in probabilistic normed spaces, Afrika Matematika, 26 (7-8), pp. 1281-1289, (2015).

[19] B. C. Tripathy and R.Goswami, On triplhe sequences of real numbers in probabilistic normed spaces, Proyecciones Jour.Math., 33 (2), pp. 157-174, (2014).
Cómo citar
Esi, A., Subramanian, N., & Esi, A. (1). On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences. Proyecciones. Journal of Mathematics, 36(4), 567-587. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2536
Sección
Artículos