On generalization of K-divergence, its order relation with J-divergence and related results

G. Farid, Atiq Ur Rehman, J. Pecaric

Resumen


In this paper, we give an order relation between J-divergence and generalized K-divergence. By using this order relation we give generalizations ofthe results related to an order relation between J-divergence and K-divergence given by J. Burbea and C. R. Rao. Also we construct class of m-exponentially convexfunctions introducing by nonnegative difference of new order relation.

Palabras clave


Convex functions; K-divergence; J-divergence; log-convexity; Cauchy means; exponentially convex functions; funciones convexas; K-divergencia; J-divergencia; convexidad logarítmica; valor medio de Cauchy; funciones exponencialmente convexas.

Texto completo:

PDF

Referencias


M. Anwar, G. Farid and J. Pecaric, Generalization of K-divergence and related results, J. Math. Ineq., 5(2), pp. 181—191, (2011).

L. Boltzman, Neitere Studien fiber das Warmegleichgewicht unter Gasmolekulen, K. Akad. Wiss. (Wein) Sitzb. 66, 275, (1872).

J. Burbea, and C.R. Rao, Entropy differential metric, distance and divergence measures in probability spaces: A unified approach, J. Multivariate Anal. 12(4), pp. 575—596, (1982).

J. Burbea and C. R. Rao, On convexity of some divergence measure based on entropy functions, IEEE Trans. Inform. Theory 28(3), pp. 489—495, (1982).

R. Clausius, Abhaudlungen fiber die mechanische Wiirmetheorie Friedrich Vieweg, Braunschweig, (1864).

R. G. Gallager, Information theory and reliable communication, Willy, New York, (1968).

S. Hussain, On Jensen’s and related inequalities, PhD thesis, Govt. College University, Lahore, 2009. URL: http://eprints.hec.gov.pk/6348/.

R. C. Lewonton, The apportionment of human diversity, Evol. Biol. 6, pp. 381—398, (1972).

P. C. Mahalanobis, On the generalized distance in statistics, Proc. Natl. Inst. Sci. 2(1), pp. 49—55, (1936).

J. Pecaric and J. Peric, Improvements of the Giaccardi and the Petrovic inequality and related Stolarsky type means, An. Univ. Craiova Ser. Mat. Inform., 39(1), pp. 65-75, (2012).

M. A. Noor, K. I. Noor and M. U. Awan, Geometrically relative convex functions, Appl. Math. Inf. Sci. 8(2), pp. 607—616, (2014).

J. E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, New York, (1992).




DOI: http://dx.doi.org/10.4067/S0716-09172016000400002

Enlaces refback

  • No hay ningún enlace refback.