On a sequence of functions Vn (α,β,δ) (x;a, k, s)

  • Naresh K. Ajudia Charotar University of Science Technology.
  • Jyotindra C. Prajapati Marwadi University.
Palabras clave: Sequence of functions, operational techniques, generating functions, finite summation formulae, Srivastava’s theorem, Singhal Srivastava generating function and Srivastava-Lavoie theorem, secuencia de funciones, Teorema de Srivastava


In this paper, authors established various properties of a sequence of functions {V(α,β,γ)(x;a,k,s)/n = 0,1,2,...} such as generating relations, bilateral generating relations, finite summation formulae, generating functions involving Stirling number, explicit representation and integral transforms.

Biografía del autor

Naresh K. Ajudia, Charotar University of Science Technology.
Department of Mathematics, H & H B Kotak Institute of Science.
Jyotindra C. Prajapati, Marwadi University.
Department of Mathematics.


[1] Buchholz, H., The Confluent Hypergeometric Function, SpringerVerlag, New York, (1969).

[2] Hubble, J. H. and Srivastava, H. M., Certain Theorem on Bilateral Generating Functions Involving Hermite, Laguerre and Gegenbauer Polynomials, Journal of Math. Anal. and Appl., 152, pp. 343—353, (1990).

[3] McBride, E. B., Obtaining Generating Functions, Springer Verlag, Berlin, (1971).

[4] Prajapati, J. C. and Ajudia, N. K., On New Sequence of Functions and Their MATLAB Computation, International J. of Phy., Chem. and Math. Sci., 1(2), pp. 24-34, (2012).

[5] Riordan, J., Combinatorial Identities, John Wiley & Sons, Inc., U.S.A., (1968).

[6] Shukla, A. K. and Prajapati, J. C., Some Properties of a Class of Polynomials Suggested by Mittal, Proyecciones Journal of Mathematics, 26(2), pp. 145-156, (2007).

[7] Singhal, J. P. and Srivastava, H. M., A Class of Bilateral Generating Functions for Certain Classical Polynomials. Pacific J. Math., 42, pp. 755-762, (1972).

[8] Srivastava, H. M., Some Generalizations of Carlitz’s Theorem. Pacific J. of Math., 85(2), pp. 471-477, (1979).

[9] Srivastava, H. M., Some Bilateral Generating Functions for a Certain Class of Special Functions-I and II, Proc. Indag. Math., 83(2), pp. 221-246, (1980).

[10] Srivastava, H. M., Some Families of Generating Functions Associated with the Stirling Numbers of the Second Kind, Journal of Math. Anal. and Appl., 251, pp. 752-769, (2000).

[11] Srivastava, H. M. and Lavoie, J.-L., A Certain Method of Obtaining Bilateral Generating Functions, Indag. Math., 78(4), pp. 304-320, (1975).

[12] Srivastava, H. M. and Manocha, H. L., A Treatise on Generating Functions, Ellis Harwood Limited-John Wiley and Sons, New York, (1984).
Cómo citar
Ajudia, N., & Prajapati, J. (2017). On a sequence of functions Vn (α,β,δ) (x;a, k, s). Proyecciones. Revista De Matemática, 35(4), 417-436. https://doi.org/10.4067/S0716-09172016000400005