Abstract

Let G be a graph with q edges. A graph G is called even vertex odd mean graph if there exist an injective labeling $f : V(G) \rightarrow \{0, 2, 4, 6, ..., 2q\}$ with an induced edge labeling $f^* : E(G) \rightarrow \{1, 3, 5, ..., 2q-1\}$ such that for each edge uv, $f^*(uv) = \frac{f(u)+f(v)}{2}$ is bijection. In this paper we obtain sufficient conditions for certain uniform theta graphs to be even vertex odd mean graphs.

Mathematics Subject Classification: 05C78.

Keywords: Labeling, Even vertex odd mean labeling, Even vertex odd mean graphs, Uniform theta graphs, Cryptography.
1. Introduction

Let \(G = (V, E) \) be a simple, connected and undirected graph with vertex set \(V(G) \) and edge set \(E(G) \). The notions and terminology that exist in this paper can be found in Harary [6]. In [9] Rajan et al. defined a generalized theta graph \(\theta(m_1, m_2, \ldots, m_n) \) is the graph obtained by taking two different isolated vertices \(u \) and \(v \) (called the end vertices of \(\theta \)) and attaching them by \(n \) internal disjoint paths of length greater than one, where \(m_i, 1 \leq i \leq n \) denote the order of internal vertices of \(\ith \) path. The two isolated vertices \(u \) and \(v \) are called north pole \((N) \) and south pole \((S) \) respectively. A generalized theta graph is called uniform theta graph if all internal disjoint paths have the same order i.e. \(m_i = m \) for all \(1 \leq i \leq n \). A uniform theta graph with \(n \) internal disjoint paths, all have the same order \(m \) is denoted by \(\theta(n; m) \). In Figure 1 we show the representation of \(\theta(3; 5) \). R. Vasuki et al. defined the even vertex odd mean labeling on graph \(G = (V, E) \) as an injective vertex labeling \(f \) from \(V(G) \) to \(\{0, 2, \ldots, 2q\} \) such that the induced edge labeling \(f^* \) is defined by \(f^*(uv) = \frac{f(u) + f(v)}{2} \) for every edge \(uv \in G \). The resulting edge labels are odd distinct integers from \(\{1, 3, 5, \ldots, 2q - 1\} \) [10]. A graph that admits an even vertex odd mean labeling is said to be an even vertex odd mean graph \([1],[2],[3],[4],[7],[8],[11]\]. Labeled graphs are used in coding theory, cryptography, mathematical modelling, x-ray, crystallography, and determining optimal circuit layouts, also graph theory is important in many areas of computer science study, including networking, database management systems, and artificial intelligence [12]. Gallian provides a current survey of numerous graph labeling challenges as well as a comprehensive bibliography [5].

![Uniform theta graph \(\theta(3; 5) \)](image-url)
2. Main results

Theorem 1. If \(n \) is odd and \(m \geq 2 \), then \(\theta(n;m) \) is an even vertex odd mean graph.

Proof. Let \(G = \theta(n;m) \) be a uniform theta graph. Let \(u,v \) be the pair of end vertices of degree \(n \) and \(u_{ij} \) \((1 \leq i \leq n, 1 \leq j \leq m)\) be the internal vertices of \(n \) copies of path \(P_{(m+2)} \). Then \(|V(G)| = mn + 2 \) and \(|E(G)| = mn + n \). Define an injective function \(f : V(G) \to \{0, 2, 4, \ldots, 2q = 2mn + 2n\} \) as follows, label the end vertices \(u \) and \(v \) by \(2mn + 2n \) and 0 respectively.

Case(i). When \(m \) is odd.
Let \(P^i_m \) denote the \(i \)th internal path of \(\theta(n;m) \), hence the vertices \(P^1_m \) and \(P^2_m \) are labeled as follows:

\[
\begin{align*}
 f(u_{ij}) &= \begin{cases}
 2n(m - j) + 4n - 2, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\
 2n(m - j) - 2n + 4, & 1 \leq j \leq m \text{ and } j \text{ is even}
 \end{cases} \\
 f(u_{2j}) &= \begin{cases}
 2n(m - j) + 4n - 6, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\
 2n(m - j) - 2n + 12, & 1 \leq j \leq m \text{ and } j \text{ is even}
 \end{cases}
\end{align*}
\]

Now if the vertices of the internal path \(P^{i-2}_m \) are labeled by \(f \), hence the vertices of the internal path \(P^i_m \) are labeled as follows:

\[
\begin{align*}
 f(u_{ij}) &= \begin{cases}
 f(u_{(i-2)j}) - 8, & 3 \leq i \leq n \text{ and } i \text{ is odd} \\
 f(u_{(i-2)j}) + 16, & 3 \leq i \leq n \text{ and } i \text{ is even}
 \end{cases}
\end{align*}
\]

Clearly, the induced edge labeling \(f^* \) is obtained as follows:
Let \(E_u \) and \(E_v \) be the set of edges joining between the end points of \(n \) disjoint paths and the two isolated vertices \(u \) and \(v \) respectively. Then we denote the set of edge labels of \(E_u \) and \(E_v \) by \(f^*(E_u), f^*(E_v) \) respectively. Thus, it is observed that:

For \(1 \leq i \leq n \)
\[
\begin{align*}
 f^*(E_u) &= 2n(m + 1) - 2i + 1, \\
 f^*(E_v) &= 2n - 2i + 1.
\end{align*}
\]

Also let \(E(P^i_m) \) be the set of all edges of the \(i \)th internal path of \(\theta(n;m) \). We denote the set of edge labels of \(E(P^i_m) \) by \(f^*(E(P^i_m)) \). So it is easy to see that:

For \(1 \leq j \leq m - 1 \)
\[
\begin{align*}
 f^*(E(P^1_m)) &= 2nm - 2nj + 1, \\
 f^*(E(P^2_m)) &= 2nm - 2nj + 3.
\end{align*}
\]
It follows that the induced edge labels of $E(P_{m}^i)$ are given by:

$$f^*(E(P_{m}^i)) = \begin{cases}
 f^*(E(P_{m}^1)) + 2i - 2, & 3 \leq i \leq n \text{ and } i \text{ is odd} \\
 f^*(E(P_{m}^2)) + 2i - 4, & 3 \leq i \leq n \text{ and } i \text{ is even.}
\end{cases}$$

Hence, f is an even vertex odd mean labeling of $\theta(n;m)$.

Case (ii). When m is even. Here the vertices of 1st and $(\frac{n+3}{2})$-th internal paths label as follows:

$$f(u_{1j}) = \begin{cases}
 2n(m - j) + 4n - 2, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\
 2n(m - j) + 2n, & 1 \leq j \leq m \text{ and } j \text{ is even.}
\end{cases}$$

$$f(u_{(\frac{n+3}{2})j}) = \begin{cases}
 2n(m - j) + 2n - 4, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\
 2n(m - j) + 4n - 2, & 1 \leq j \leq m \text{ and } j \text{ is even.}
\end{cases}$$

Also the remaining vertices of other internal paths label as follows:

$$f(u_{ij}) = \begin{cases}
 f(u_{1j}) - 4i + 4, & 2 \leq i \leq \frac{n+1}{2} \\
 f(u_{(\frac{n+3}{2})j}) - 4i + 2n + 6, & \frac{n+3}{2} \leq i \leq n.
\end{cases}$$

Therefore, we can compute the induced edge labels as follows:

$$f^*(E_u) = \{2n(m + 1) - 2i + 1, 1 \leq i \leq n\}$$

$$f^*(E_v) = \{n - 2i + 2, 1 \leq i \leq \frac{n+1}{2}\} \cup \{3n - 2i + 2, \frac{n+3}{2} \leq i \leq n\}$$

Also the set of edge labels of $E(P_{m}^1)$ and $E(P_{m}^{(\frac{n+3}{2})})$ are given as follows:

$$f^*(E(P_{m}^1)) = 2n(m - j) + 2n - 1, 1 \leq j \leq m - 1$$

$$f^*(E(P_{m}^{(\frac{n+3}{2})})) = 2n(m - j) + 2n - 3, 1 \leq j \leq m - 1.$$}

Clearly, the edge labels of $E(P_{m}^i)$ are given by:

$$f^*(E(P_{m}^i)) = \begin{cases}
 f^*(E(P_{m}^1)) - 4i + 4, & 2 \leq i \leq \frac{n+1}{2} \\
 f^*(E(P_{m}^{(\frac{n+3}{2})})) - 4i + 2n + 6, & \frac{n+5}{2} \leq i \leq n.
\end{cases}$$

Hence, f is an even vertex odd mean labeling of $\theta(n;m)$. \hfill \Box

Example 2.1. The even vertex odd mean labeling f of $\theta(7;5)$ and $\theta(9;6)$ are given in Figure 2 and Figure 3 respectively.
Even vertex odd mean labeling of uniform theta graphs

Figure 2.1: An even vertex odd mean labeling of $\theta(7; 5)$

Figure 2.2: An even vertex odd mean labeling of $\theta(9; 6)$
Theorem 2. If n is even and m is odd or $n = 4$ and m is even, then
$	heta(n;m)$ is an even vertex odd mean graph.

Proof. Consider $G = \theta(n;m)$ is a uniform theta graph where n is even and $m \geq 1$. Then we can define an injective function $f : V(G) \rightarrow \{0, 2, 4, ..., 2q = 2mn + 2n\}$ as follows, label the end vertices u and v by $2mn + 2(n - m) + 2$ and 0 respectively.

Case(i). When n is even and m is odd.
In this case the vertices of the internal paths $u_{ij}(1 \leq i \leq n, 1 \leq j \leq m)$ label as the following, first we label the vertices of the paths P_m^1, P_m^2 by:

$$f(u_{1j}) = \begin{cases} 2mn + 2(n - m) + 2j - 2, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\ 2mn + 2(n - m) + 2j + 2, & 1 \leq j \leq m \text{ and } j \text{ is even.} \end{cases}$$

$$f(u_{2j}) = \begin{cases} 2mn + 2(n - m) - 2j - 2, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\ 2mn + 2(n - m) - 2j + 2, & 1 \leq j \leq m \text{ and } j \text{ is even.} \end{cases}$$

Now, for $1 \leq i \leq \frac{n}{2}$ and $\frac{n}{2} + 3 \leq i \leq n$ if the vertices of the path P_m^{i-2} are labeled, then the vertices of the path P_m^{i} are labeled as follows:

$$f(u_{ij}) = f(u_{(i-2)j}) - 4m - 4.$$

Also for $i = \frac{n}{2} + 1, \frac{n}{2} + 2$ the vertices of the internal two paths $P_m^\frac{n}{2}+1$ and $P_m^\frac{n}{2}+2$ are labeled as follows:

$$f(u_{ij}) = \begin{cases} f(u_{(i-2)j}) - 4m - 4, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\ f(u_{(i-2)j}) - 4m - 8, & 1 \leq j \leq m \text{ and } j \text{ is even.} \end{cases}$$

According to Theorem 1. we can compute the induced edge labels as follows:

$$f^*(E_u) = \begin{cases} (m + 1)(2n - i) - m + 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ (m + 1)(2n - i) + 1, & 1 \leq i \leq n \text{ and } i \text{ is even.} \end{cases}$$

$$f^*(E_v) = \begin{cases} (m + 1)(n - i) + m, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ (m + 1)(n - i) + 1, & 1 \leq i \leq n \text{ and } i \text{ is even.} \end{cases}$$

$$f^*(E(P_m^1)) = 2nm + 2(n - m) + 2j + 1, \quad 1 \leq j \leq n - 1$$

$$f^*(E(P_m^2)) = 2nm + 2(n - m) - 2j - 1, \quad 1 \leq j \leq n - 1.$$

Suppose the edge of the path P_m^{i-2} are obtained, hence for $1 \leq i \leq \frac{n}{2}$ and $\frac{n}{2} + 3 \leq i \leq n$ the edge labels of P_m^{i} are labeled as follows:

$$f^*(E(P_m^i)) = f^*(E(P_m^{i-2})) - 4m - 4.$$
For \(i = \frac{n}{2} + 1, \frac{n}{2} + 2 \) the edge of the two internal paths \(E(P_{m}^{n+1}) \) and \(E(P_{m}^{n+2}) \) are labeled by:
\[
f^*(E(P_{m}^{i})) = f^*(E(P_{m}^{i-2})) - 4m - 6.
\]

Therefore, \(f \) is an even vertex odd mean labeling of \(\theta(n;m) \).

Case(ii). When \(n = 4 \) and \(m \) is even.

Here the vertices of the internal paths \(P_{m}^{1}, P_{m}^{2}, P_{m}^{3} \) and \(P_{m}^{4} \) are labeled as follows:
\[
\begin{align*}
f(u_{1j}) &= \begin{cases}
6m + 2j + 10, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\
6m + 2j + 6, & 1 \leq j \leq m \text{ and } j \text{ is even.}
\end{cases} \\
f(u_{2j}) &= \begin{cases}
6m - 2j + 10, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\
6m - 2j + 6, & 1 \leq j \leq m \text{ and } j \text{ is even.}
\end{cases} \\
f(u_{3j}) &= \begin{cases}
2m + 2j + 6, & 1 \leq j \leq m \text{ and } j \text{ is odd} \\
2m + 2j - 2, & 1 \leq j \leq m \text{ and } j \text{ is even.}
\end{cases} \\
f(u_{4j}) &= \begin{cases}
2m + 4, & j = 1 \\
2m - 2j + 2, & 2 \leq j \leq m.
\end{cases}
\]

Clearly, the edge labels of the four internal paths are given as follows:
\[
\begin{align*}
f^*(E(P_{m}^{1})) &= 6m + 2j + 9 \\
f^*(E(P_{m}^{2})) &= 6m - 2j + 7 \\
f^*(E(P_{m}^{3})) &= 6m - 2j + 3. \\
f^*(E(P_{m}^{4})) &= \begin{cases}
2m + 1, & j = 1 \\
2m - 2j + 1, & 2 \leq j \leq m.
\end{cases}
\]

Thus, \(f \) is an even vertex odd mean labeling of \(\theta(n;m) \). For other even values of \(m \) the problem becomes NP-hard problems.

Example 2.2. The even vertex odd mean labeling \(f \) of \(\theta(8;7) \) and \(\theta(4;12) \) are given in Figure 4 and Figure 5 respectively.
Figure 2.3: An even vertex odd mean labeling of $\theta(8; 7)$

Figure 2.4: An even vertex odd mean labeling of $\theta(4; 12)$
References

M. Basher
Department of Mathematics,
College of Science and Arts in Unaizah,
Qassim University,
Qassim,
Saudi Arabia

Department of Mathematics and Computer Science,
Faculty of Science,
Suez University,
P. O. Box 43221,
Suez,
Egypt
e-mail: m.basher@qu.edu.sa
m_e_basher@yahoo.com