TY - JOUR
TI - Local vertex antimagic chromatic number of some wheel related graphs
PY - 2022/01/28
Y2 - 2024/10/14
JF - Proyecciones (Antofagasta, On line)
JA - Proyecciones (Antofagasta, On line)
VL - 41
IS - 1
SE - Artículos
LA - English
DO - 10.22199/issn.0717-6279-4420
UR - https://doi.org/10.22199/issn.0717-6279-4420
SP - 319-334
AB - Let G = (V,E) be a graph of order p and size q having no isolated vertices. A bijection ƒ : E → {1, 2, 3, ..., q} is called a local antimagic labeling if for all uv ∈ E we have w(u) ≠ w(v), the weight w(u) = ∑e∈E(u) f(e) where E(u) is the set of edges incident to u. A graph G is local antimagic if G has a local antimagic labeling. The local antimagic chromatic number χla(G) is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we determine the local antimagic chromatic number for some wheel related graphs.
ER -