TY - JOUR
AU - Jeyanthi, P.
AU - Maheswari, A.
PY - 2018/11/22
Y2 - 2021/08/05
TI - Odd Vertex equitable even labeling of cyclic snake related graphs.
JF - Proyecciones (Antofagasta, On line)
JA - Proyecciones (Antofagasta, On line)
VL - 37
IS - 4
SE -
DO -
UR - https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3271
SP - 613-625
AB - <p>Let G be a graph with p vertices and q edges and A = {1, 3, ..., q} if q is odd or A = {1, 3, ..., q + 1} if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling f : V (G) → A that induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the induced edge labels are 2, 4, ..., 2q where vf (a) be the number of vertices v with f(v) = a for a ∈ A. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the graph nC4-snake, CS(n1, n2, ..., nk), ni ≡ 0(mod4),ni ≥ 4, be a generalized kCn -snake, TÔQS<sub>n</sub> and TÕQS<sub>n</sub> are odd vertex equitable even graphs.</p>
ER -