TY - JOUR
AU - Harary, Frank
AU - Haynes, Teresa W.
AU - Lewinter, Martin
PY - 2018/04/03
Y2 - 2023/03/28
TI - On the codomination number of a graph
JF - Proyecciones (Antofagasta, On line)
JA - Proyecciones (Antofagasta, On line)
VL - 12
IS - 2
SE -
DO - 10.22199/S07160917.1993.0002.00005
UR - https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/2634
SP - 149-153
AB - <p>Given a graph G = (V, E), set S ? V is a dominating set if each node of V - S is adjacent to at least one node in S. The domination number of G is the smallest size of a dominating set and the codomination number is the domination number of its complement. We determine the codomination number of a graph having diameter at least three. Further we explore the effects of this result on the open problem of characterizing graphs having equal domination and codomination numbers.</p>
ER -