@article{Anitha_Rajasingh_2019, title={Zero forcing in Benzenoid network}, volume={38}, url={https://www.revistaproyecciones.cl/index.php/proyecciones/article/view/3907}, DOI={10.22199/issn.0717-6279-2019-05-0064}, abstractNote={<p><em>A set S of vertices in a graph G is called a dominating set of G if every vertex in V (G)\S is adjacent to some vertex in S. A set S is said to be a power dominating set of G if every vertex in the system is monitored by the set S following a set of rules for power system monitoring. The power domination number of G is the minimum cardinality of a power dominating set of G. A dynamic coloring of the vertices of a graph G starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is called a forcing set (zero forcing set) of G if, by iteratively applying the forcing process, every vertex in G becomes colored. The zero forcing number of G, denoted Z(G), is the minimum cardinality of a zero forcing set of G. In this paper, we obtain the zero forcing number for certain benzenoid networks.</em></p> <p><strong><em> </em></strong></p>}, number={5}, journal={Proyecciones (Antofagasta, On line)}, author={Anitha, J. and Rajasingh, Indra}, year={2019}, month={Dec.}, pages={999-1010} }