Note on modified generalized Bessel function
DOI:
https://doi.org/10.22199/issn.0717-6279-5820Keywords:
modified Bessel function, generalized hypergeometric function, modified Bessel matrix functionAbstract
An attempt is made to define Modified Generalized Bessel Function, and Modified Generalized Bessel Matrix Function. Some properties have also been discussed.
Downloads
References
R. S. Batahan and M. S. Metwally, “Differential and Integral Operators on Appell’s Matrix Function”, Alandalus Journal of Social and Applied Sciences, vol. 2008, no. 2, pp. 7-25, 2023.
L. Galue, “A Generalized Bessel Function”, Integral Transforms and Special Functions, vol. 14, no. 5, pp. 395-401, 2003.
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittage-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. New York: Springer, 2004.
L. Jódar, R. Company and E. Navarro, “Bessel matrix functions, explicit solution of coupled Bessel type equations”, Utilitas Mathematica, vol. 46, pp. 129-141, 1994.
L. Jódar and J. C. Cortés, On the Hypergeometric Matrix Function”, Journal of Computational and Applied Mathematics, vol 99, nos. 1-2, pp. 205-217, 1998. https://doi.org/10.1016/S0377-0427(98)00158-7
L. Jódar and J. C. Cortés, “Some properties of Gamma and Beta Matrix Functions”, Applied Mathematics Letters, vol. 11, pp. 89-93, 1998. https://doi.org/10.1016/S0893-9659(97)00139-0
L. Jódar and J. C. Cortés, “Closed form general solution of the hypergeometric matrix differential equation”, Mathematical and Computer Modelling, vol. 32, pp. 1017-1028, 2000. https://doi.org/10.1016/S0895-7177(00)00187-4
E. D. Rainville, Special functions. New York: The Macmillan Company, 1960.
J. Sastre and L. Jódar, “Asymptotics of the modified Bessel and incomplete gamma matrix functions”, Applied Mathematics Letters, vol. 16, no. 6, pp. 815-820, 2003. https://doi.org/10.1016/S0893-9659(03)90001-2
A. Shehata and S. Khan, “On Bessel-Maitland Matrix function”, Mathematica, vol. 80, pp. 90-103, 2015.
G. N. Watson, A treatise on the Theory of Bessel Functions, Cambridge University Press, London, 1958.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Farhatbanu H. Patel, Ranjan Jana, Ajay Shukla
This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.