Resistance distance of generalized wheel and dumbbell graph using symmetric {1}-inverse of Laplacian matrix

Authors

  • Sakthidevi Kaliyaperumal Vellore Institute of Technology.
  • Kalyani Desikan Vellore Institute of Technology.

DOI:

https://doi.org/10.22199/issn.0717-6279-5510

Keywords:

Dumbbell graph, resistance distance, Laplacian matrix, block matrices, Moore-Penrose inverse

Abstract

A new class of graphs called dumbbell graphs, denoted by DB(Wm,n) is the graph obtained from two copies of generalized wheel graph Wm,n, m ≥ 2, n ≥ 3. It is a graph on 2 (m + n) vertices obtained by connecting m-vertices in one copy with the corresponding vertices in the other copy. The resistance distance between two vertices vi and vj, denoted by rij , is defined as the effective electrical resistance between them if each edge of G is replaced by 1 ohm resistor. The Kirchhoff index is the sum of the resistance distances between all pairs of vertices in the graph. In this paper, we formulate the resistance distance of Wm,n and DB(Wm,n) using Symmetric {1}-inverse of Laplacian matrices. We provide examples to illustrate the proposed method and also obtain the Kirchhoff indices for these examples.

Author Biographies

Sakthidevi Kaliyaperumal, Vellore Institute of Technology.

Department of Mathematics, School of Advanced Sciences.

Kalyani Desikan, Vellore Institute of Technology.

Department of Mathematics, School of Advanced Sciences.

References

A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and Applications. vol. 15. Springer, 2003.

C. Bu, B. Yan, X. Zhou, and J. Zhou, “Resistance distance in subdivision-vertex join and subdivision-edge join of graphs”, Linear Algebra and its Applications, vol. 458, pp. 454–462, 2014. https://doi.org/10.1016/j.laa.2014.06.018

C. Bu, L. Sun, J. Zhou, and Y. Wei, “A note on block representations of the group inverse of Laplacian matrices”, The Electronic Journal of Linear Algebra, vol. 23, 2012. https://doi.org/10.13001/1081-3810.1562

C. Bu, M. Li, K. Zhang, and L. Zheng, “Group inverse for the block matrices with an invertible subblock”, Applied Mathematics and Computation, vol. 215, no. 1, pp. 132–139, 2009. https://doi.org/10.1016/j.amc.2009.04.054

D. Wang and Y. Yang, “Resistance distances in linear polyacene graphs”, Frontiers in Physics, vol. 8, 2021. https://doi.org/10.3389/fphy.2020.600960

D. J. Klein, “Resistance-distance sum rules”, Croatica chemica acta, vol. 75, no. 2, pp. 633-649, 2002. [On line]. Available: https://bit.ly/3W8yS1T

D. J. Klein, and M. Randić, “Resistance distance”, Journal of Mathematical Chemistry, vol. 12, pp. 81-95, 1993.

D. J. Klein, I. Lukovits, and I. Gutman, “On the definition of the hyper-wiener index for cycle-containing structures”, Journal of Chemical Information and Computer Sciences, vol. 35, no. 1, pp. 50–52, 1995. https://doi.org/10.1021/ci00023a007

P. G. Doyle and J. L. Snell, Random walks and electric networks, Washington, DC: The Mathematical Association of America, 1984.

F. Buckley and F. Harary, “On the Euclidean dimension of a Wheel”, Graphs and Combinatorics, vol. 4, pp. 23-30, 1988. https://doi.org/10.1007/bf01864150

H. Zhang and Y. Yang, “Resistance distance and Kirchhoff index in Circulant graphs”, International Journal of Quantum Chemistry, vol. 107, pp. 330-339, 2006. https://doi.org/10.1002/qua.21068

M. A. Jafarizadeh, R. Suffiani and S. Jafarizadeh, “Recursive calculation of effective resistance in distance-regular networks based on Bose-Mesner algebra and christoffel-Darboux identity”, Journal of Mathematical Physics, vol. 50, 2009. https://doi.org/10.1063/1.3077145

S. Jafarizadeh, R. Suffiani and M.A.Jafarizadeh, Evaluation of Resistances in pseudo-Distance-Regular resistor networks”, Journal of Statistical Physics, vol. 139, pp. 177-199, 2010. https://doi.org/10.1007/s10955-009-9909-8

J-B. Liu, X-F Pan and F-T Hu, “The {1}-inverse of the Laplacian of subdivision-vertex and subdivision-edge coronae with applications”, Linear and Multilinear Algebra, vol. 65, pp. 178-191, 2016. https://doi.org/10.1080/03081087.2016.1179249

J. Cao, J-B. Liu and S. Wang, “Resistance distances in corona and neighborhood corona networks based on Laplacian generalized inverse approach”, Journal of Algebra and Its Applications, vol. 18, 2019. https://doi.org/10.1142/s0219498819500531

J. Zhao, J-B. Liu and A. Zafari, “Complete characterization of resistance distance for Linear octogonal networks”, Hindawi complexity, 2020. https://doi.org/10.1155/2020/5917098

J. L. Palacios, “Closed-form formulas for Kirchhoff index”, International Journal of Quantum Chemistry, vol.81, pp. 135-140, 2001. https://doi.org/10.1002/1097-461x(2001)81:2<135::aid-qua4>3.0.co;2-g

B. Borovicanin, K. Ch. Das, B. Furtula and I. Gutman, Zagreb Indices: Bounds and Extremal Graphs in Chemical Graph Theory Basics, I. Gutman, B. Furtula, K. C. Das, E. Milovanovic, and I. Milovanović, Eds., University Kragujevac, Kragujevac, 2017, pp. 67-153.

L. Zhang, J. Zhao, J-B. Liu, and S. Daoud, “Resistance distance in the double corona based on R-graph”, Mathematics, vol. 7, no. 1, p. 92, 2019. https://doi.org/10.3390/math7010092

L. Zhang and J-B. Liu, “Theoretical and computational methods to resistance distances in novel graphs operations”, IEEE Access, vol. 7, pp. 107908-107916, 2019. https://doi.org/10.1109/access.2019.2932771

L. Zhang, J. Zhao, J-B. Liu and M. Arockiaraj, “Resistance Distance in H-Join of Graphs G1, G2,...,Gk”, Mathematics, vol. 6, 2018. https://doi.org/10.3390/math6120283

L. W. Shapiro, “An Electrical Lemma”, Mathematics Magazine, vol.60, pp. 36-38, 1987. https://doi.org/10.1080/0025570x.1987.11977274

I. Lukovits, S. Nikolic and N.Trinajstic, “Resistance distance in regular graphs”, International Journal of Quantum Chemistry, vol. 71, pp. 217-225, 1999. https://doi.org/10.1002/(sici)1097-461x(1999)71:3<217::aid-qua1>3.0.co;2-c

L. Ye and W. Yan, “Resistance between two vertices of almost complete bipartite graphs”, Discrete Applied Mathematics, vol. 257, pp. 299-305, 2019. https://doi.org/10.1016/j.dam.2018.08.030

M. Vaskouski and A. Zadorozhnyuk, “Resistance distances in Cayley graphs on symmetric groups”, Discrete Applied Mathematics, vol. 227, pp. 121-135, 2017. https://doi.org/10.1016/j.dam.2017.04.044

M. S. Sardar, M. Cancan, S. Ediz and W. Sajjad, “Some resistance distance and distance-based graph invariants and number of spanning trees in the tensor product of P2 and Kn”, Proyecciones (Antofagasta), vol. 39, no. 4, pp. 919-932, 2020. https://doi.org/10.22199/issn.0717-6279-2020-04-0057

C. S. J. A. Nash-Williams, “Random walks and electric currents in networks”, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 55, no. 2, pp. 181-194, 1959. https://doi.org/10.1017/S0305004100033879

N. Chair, “Exact two-point resistance and the simple random walk on the complete graph minus N edges”, Annals of Physics, vol. 327, pp. 3116-3129, 2012. https://doi.org/10.1016/j.aop.2012.09.002

N. Chair and E. M. A. Dannoun, “Two-point resistance of the Möbius ladder”, Physica Scripta, vol. 90, 2015. https://doi.org/10.1088/0031-8949/90/3/035206

P. W. Fotuler, “Resistance distances in Fullerene graphs”, Croatica Chemica Acta, vol. 75, pp. 401-408, 2002. [On line]. Available: https://bit.ly/3XrYW9m

M. Q. Qwaidat, J.H.Asad and Zhi-Zhong Tan, “Resistance computation of generalized decorated square and simple cubic network lattices”, Results in Physics, vol. 12, pp. 1621-1627, 2019. https://doi.org/10.1016/j.rinp.2019.01.070

R. B. Bapat and S. Gupta, “Resistance distance in wheels and fans”, Indian Journal of Pure and Applied Mathematics, vol. 41, pp. 1-13, 2010. https://doi.org/10.1007/s13226-010-0004-2

R. B. Bapat, I. Gutman and W. Xiao, “A simple method for computing resistance distance”, Zeitschrift für Naturforschung A, vol. 58, pp. 494-498, 2003. https://doi.org/10.1515/zna-2003-9-1003

R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge University Press, 2012.

S. V. Gervacio, Resistance distance in Complete n-partite graphs. Discrete Applied Mathematics, vol.203, pp. 53-61, 2016. https://doi.org/10.1016/j.dam.2015.09.017

S. Li, and T. Tian, “Resistance between two nodes of a ring clique network, Circuits”, Systems and Signal processing, vol. 41, pp. 1287-1298, 2021. https://doi.org/10.1007/s00034-021-01859-7

S. Huang, and S. Li, “On the resistance distance and Kirchhoff index of a linear hexagonal (cyclinder) chain”, Physica A: Statistical Mechanics and its Applications, vol. 58, 2020. https://doi.org/10.1016/j.physa.2020.124999

W. J. Yin, Z. F. Ming and Q. Liu, “Resistance distance and Kirchhoff index for a class of graphs”, Mathematical Problems in Engineering, pp. 1-8, 2018. https://doi.org/10.1155/2018/1028614

W. Barrett, E. J. Evans, and A. E. Francis, “Resistance distance in straight linear 2-trees”, Discrete Applied Mathematics, vol. 258, pp. 3-34, 2019. https://doi.org/10.1016/j.dam.2018.10.043

X. Liu, J. Zhou, and C. Bu, “Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs”, Discrete Applied Mathematics, vol. 187, pp. 130-139, 2015. https://doi.org/10.1016/j.dam.2015.02.021

X. Gao, Y. Luo and W. Liu, “Resistance distances and the Kirchhoff index in Cayley graphs”, Discrete Applied Mathematics, vol. 159, pp. 2050-2057, 2011. https://doi.org/10.1016/j.dam.2011.06.027

Y. Shangguan and H. Chen, “Two-point resistances in an Apollonian network”, Physical Review E, vol.96, 2017. https://doi.org/10.1103/physreve.96.062140

Y. Shangguan and H. Chen, “Two-point resistances in a family of self-similar (x, y) − flower networks”, Physica A: Statistical Mechanics and its Applications, vol. 523, pp. 382-391, June 2019. https://doi.org/10.1016/j.physa.2019.02.008

Z. Jiang and W. Yan, “Some Two-point Resistances of the Sierpinski Gasket Network”, Journal of Statistical Physics, vol. 172, pp. 824-832, 2018. https://doi.org/10.1007/s10955-018-2067-0

Z. Cinkir, “Effective resistances and Kirchhoff index of Ladder graphs”, Journal of Mathematical Chemistry, vol. 54, pp. 955-966, 2016. https://doi.org/10.1007/s10910-016-0597-8

Z. Jiang, and W. Yan, “Resistance between two nodes of a Path network”, Applied Mathematics and Computation, vol. 361, pp. 42-46, 2019. https://doi.org/10.1016/j.amc.2019.05.006

Published

2023-01-26

How to Cite

[1]
S. Kaliyaperumal and K. Desikan, “Resistance distance of generalized wheel and dumbbell graph using symmetric {1}-inverse of Laplacian matrix”, Proyecciones (Antofagasta, On line), vol. 42, no. 1, pp. 145-166, Jan. 2023.

Issue

Section

Artículos