Lie (Jordan) centralizers on alternative algebras
DOI:
https://doi.org/10.22199/issn.0717-6279-4789Keywords:
alternative algebra, Lie centralizer, centralizerAbstract
In this article, we study Lie (Jordan) centralizers on alternative algebras and prove that every multiplicative Lie centralizer has proper form on alternative algebras under certain assumptions.
References
L. Liu, “On Jordan centralizers of triangular algebras”, Banach Journal of Mathematical Analysis, vol. 10, no. 2, pp. 223-234, 2016. https://doi.org/10.1215/17358787-3492545
L. Liu, “On nonlinear Lie centralizers of generalized matrix algebras”, Linear and Multilinear Algebra, 2020. doi: 10.1080/03081087.2020.1810605
A. Jabeen, “Lie (Jordan) centralizers on generalized matrix algebras”, Communications in Algebra, pp. 278-291, 2020. https://doi.org/10.1080/00927872.2020.1797759
A. Fošner and W. Jing, “Lie centralizers on triangular rings and nest algebras”, Advances in Operator Theory, vol. 4, no. 2, pp. 342-350, 2019. https://doi.org/10.15352/aot.1804-1341
F. Ghomanjani and M. A. Bahmani, “A note on Lie centralizer maps”, Palestine Journal of Mathematics, vol. 7, no. 2, pp. 468-471, 2018.
B. E. Johson, “An introduction to the theory of centralizers”, Proceedings of the London Mathematical Society, vol. 14, pp. 299-320, 1964. https://doi.org/10.1112/plms/s3-14.2.299
M. Ashraf and N. Parveen, “On Jordan triple higher derivable mappings on rings”, Mediterranean Journal of Mathematics, vol. 13, no. 4, pp. 1465-1477, 2016. https://doi.org/10.1007/s00009-015-0606-3
M. Ashraf and N. Parveen, ”Jordan higher derivable mappings on rings”, Algebra, vol. 2014, 2014. https://doi.org/10.1155/2014/672387
R. N. Ferreira and B. L. M. Ferreira, “Jordan triple derivation on alternative rings”, Proyecciones (Antofagasta), vol. 37, no. 1, pp. 171-180, 2018. https://doi.org/10.4067/S0716-09172018000100171
R. N. Ferreira and B. L. M. Ferreira, “Jordan derivation on alternative rings”, International Journal of Mathematics, Game Theory, and Algebra, vol. 25, no. 4, pp. 435-444, 2016.
M. Ashraf and M.S. Akhtar and A. Jabeen, “Additivity of r-Jordan triple maps on triangular algebras”, Pacific Journal of Applied Mathematics, vol. 9, no. 2, pp. 121-136, 2017.
M. Ashraf and A. Jabeen, “Nonlinear Jordan triple higher derivable mappings of triangular algebras”, Southeast Asian Bulletin of Mathematics, vol. 42, no. 4, pp. 503-520, 2018.
M. Ashraf and N. Parveen, “Lie triple higher derivable mappings on rings”, Communications in Algebra, vol. 45, no. 5, pp. 2256-2275, 2014.
M. Ashraf and N. Parveen, “On Lie higher derivable mappings on prime rings”, Beiträge zur Algebra und Geometrie, vol. 57, no. 1, pp. 137-153, 2016. https://doi.org/10.1007/s13366-015-0246-6
C. Haetinger, M. Ashraf and S. Ali, “On higher derivations: a survey”, International Journal of Mathematics, Game Theory, vol. 19, nos. 5-6, pp. 359-379, 2011.
M. N. Daif, “When is a multiplicative derivation additive?”, International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 3, pp. 615-618, 1991. https://doi.org/10.1155/s0161171291000844
J. C. M. Ferreira and H. Guzzo Jr., “Multiplicative mappings of alternative rings”, Algebras Groups and Geometries, vol. 31, no. 3, 239-250, 2014.
J. C. M. Ferreira and H. Guzzo Jr., “Jordan elementary maps on alternative rings”, Communications in Algebra, vol. 42, no. 2, pp. 779-794, 2014. https://doi.org/10.1080/00927872.2012.724252
B. L. M. Ferreira and R. Nascimento, “Derivable maps on alternative rings”, Revista Ciencias Exatas e Naturais, vol. 16, no. 1, pp. 1-5, 2014. https://doi.org/10.5935/recen.2014.01.01
R. D. Schafer, “Alternative algebras over an arbitrary field”, Bulletin of the American Mathematical Society, vol. 49, no. 8, pp. 549-555, 1943. https://doi.org/10.1090/s0002-9904-1943-07967-0
R. D. Schafer, “Generalized standard algebras”, Journal of Algebra, vol. 12, no. 3, pp. 386-417, 1969. https://doi.org/10.1016/0021-8693(69)90039-8
R. D. Schafer, An introduction to nonassociative algebras. Academic Press, 1966.
M. Ferrero and C. Haetinger, “Higher derivations and a theorem by Herstein”, Quaestiones Mathematicae, vol. 25, no. 2, pp. 249-257, 2002. https://doi.org/10.2989/16073600209486012
M. Ferrero and C. Haetinger, “Higher derivations of semiprime rings”, Communications in Algebra, vol. 30, no. 5, pp. 2321-2333, 2002. https://doi.org/10.1081/agb-120003471
H. Hasse and F. K. Schimdt, “Noch eine Begründung ger Theorie der höheren Differential quotenten in einem algebraischen Fünktiosenkörper einer Unbestimten”, Journal für die reine und angewandte Mathematik, vol. 177, pp. 215-237, 1937. https://doi.org/10.1515/crll.1937.177.215
C. Haetinger, M. Ashraf and S. Ali, “Higher derivations: A survey”, International Journal of Mathematics, Game Theory and Algebra, vol. 19, nos. 5-6, pp. 359-379, 2011.
W. Jing and F. Lu, “Additivity of Jordan (triple) derivations on rings”, Communications in Algebra, vol. 40, no. 8, pp. 2700-2719, 2012. https://doi.org/10.1080/00927872.2011.584927
F. Lu, “Jordan derivable maps of prime rings”, Communications in Algebra, vol. 38, no. 12, pp. 4430-4440, 2010. https://doi.org/10.1080/00927870903366884
W. S. Martindale III, “When are multiplicative mappings additive?”, Proceedings of the American Mathematical Society, vol. 21, no. 3, pp. 695-698, 1969. https://doi.org/10.1090/s0002-9939-1969-0240129-7
B. L. M. Ferreira and H. Guzzo Jr, “Lie maps on alternative rings”, Bollettino dell'Unione Matematica Italiana, vol. 13, no. 2, pp. 181-192, 2020. https://doi.org/10.1007/s40574-019-00213-9
B. L. M. Ferreira, H. Guzzo Jr. and F. Wei, “Multiplicative Lie-type derivations on alternative rings”, Communications in Algebra, vol. 48, no. 12, pp. 5396-5411, 2020. https://doi.org/10.1080/00927872.2020.1789160
B. L. M. Ferreira, H. Guzzo Jr., R. N. Ferreira and F. Wei, “Jordan derivations of alternative rings”, Communications in Algebra, vol. 48, no. 2, pp. 717-723, 2020. https://doi.org/10.1080/00927872.2019.1659285
B. L. M. Ferreira and I. Kaygorodov, “Commuting maps on alternative rings”, Ricerche di Matematica, vol. 71, pp. 67-78, 2020. https://doi.org/10.1007/s11587-020-00547-z
Published
How to Cite
Issue
Section
Copyright (c) 2022 Aisha Jabeen, Bruno Ferreira

This work is licensed under a Creative Commons Attribution 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.