On a two-fold cover 2.(2⁶˙G₂(2)) of a maximal subgroup of Rudvalis group Ru





Non-split extension, Projective character table, Factor set, Schur multiplier, Representation group, Inertia factor groups, Fischer matrices


The Schur multiplier M(Ḡ1) ≅4 of the maximal subgroup Ḡ1 = 2⁶˙G(2)of the Rudvalis sporadic simple group Ru is a cyclic group of order 4. Hence a full representative group R of the type R = 4.(2⁶˙G(2)) exists for Ḡ1. Furthermore, Ḡ1 will have four sets IrrProj(Ḡ1i) of irreducible projective characters, where the associated factor sets α1, α2, α3 and α4, have orders of 1, 2, 4 and 4, respectively. In this paper, we will deal with a 2-fold cover 2. Ḡ1 of Ḡ1 which can be treated as a non-split extension of the form Ḡ = 2G2(2). The ordinary character table of Ḡ will be computed using the technique of the so-called Fischer matrices. Routines written in the computer algebra system GAP will be presented to compute the conjugacy classes and Fischer matrices of Ḡ and as well as the sizes of the sets |IrrProj(Hi; αi)| associated with each inertia factor Hi. From the ordinary irreducible characters Irr(Ḡ) of Ḡ, the set IrrProj(Ḡ1; α2) of irreducible projective characters of Ḡ1 with factor set α2 such that α22= 1, can be obtained.

Author Biography

Abraham Love Prins, Nelson Mandela University.

Dept. of Mathematics and Applied Mathematics


F. Ali and J. Moori, “The Fischer-Clifford matrices of a maximal subgroup of Fi’24”, Representation theory, vol. 7, pp. 300-321, 2003. https://doi.org/10.1090/S1088-4165-03-00175-4

A. B. M. Basheer and J. Moori, “A survey on Clifford-Fischer theory”, in Groups St Andrews 2013, C. M. Campbell, M. R. Quick, E. F. Robertson, and C. M. Roney-Dougal, Eds. Cambridge: Cambridge University Press, 2015, pp. 160–172. https://doi.org/10.1017/CBO9781316227343.009

W. Bosma and J. J. Cannon, Handbook of Magma Functions. Sidney: University of Sydney, 1995.

C. Chileshe, “Irreducible characters of Sylow p-Subgroups associated with some classical linear groups”, Ph.D. Thesis, Mathematics, North-West University, Mafikeng Campus, South Africa, 2016. [Online]. Available: https://bit.ly/3eLc5qb

J. H. Conway, R.T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups. Oxford: Clarendon Press, 1985.

B. Fischer, “Clifford-matrices”, in Representation theory of finite groups and finite-dimensional algebras, G. O. Michler and C. Ringel, Eds. Basel: Birkhäuser, 1991, pp. 1-16. https://doi.org/10.1007/978-3-0348-8658-1_1

The GAP Group, “GAP - Groups, Algorithms, Programming - a system for computational discrete algebra”, Version 4.11.0. Feb-2020 [Online]. Available: https://www.gap-system.org/Releases/4.11.0.html

D. Gorenstein, Finite groups. New York, NY: Harper and Row, 1968.

R. J. Haggarty and J. F. Humphreys, “Projective characters of finite groups”, Proceedings of the London Mathematical Society, vol. s3-36, no 1, pp. 176-192, 1978. https://doi.org/10.1112/plms/s3-36.1.176

I. M. Isaacs, Character theory of finite groups. San Diego, CA: Academic Press, 1976.

G. Karpilovsky, Group representations, vol. 1-B. Amsterdam: North Holland, 1992.

G. Karpilovsky, Projective representations of finite groups. New York, NY: Marcel Dekker, 1985.

J. Moori, “On certain groups associated with the smallest Fischer group”, Journal of the London Mathematical Society, vol. s2-23, no. 1, pp. 61-67, 1981. https://doi.org/10.1112/jlms/s2-23.1.61

J. Moori and Z. E. Mpono, “The Fischer-Clifford matrices of the group 26:SP6(2)”, Quaestiones mathematicae, vol. 22, no. 2, pp. 257-298, 1999. https://doi.org/10.1080/16073606.1999.9632080

A. L. Prins and R. L. Fray, “The Fischer-Clifford matrices of the inertia group 27:O−6(2) of a maximal subgroup 27:Sp6(2) in Sp8(2)”, International journal of group theory, vol. 2, no. 3, pp. 19-38, 2013. https://doi.org/10.22108/IJGT.2013.2049

A. L. Prins, “On the Fischer-Clifford matrices of the non-split extension 26· G2(2)”, Bulletin of the Iranian Mathematical Society, vol. 41, no.4, pp. 857-871, 2015. [Online]. Available: https://bit.ly/3xZZIhv

A. L. Prins, “The projective character tables of a solvable group 26:(6 × 2)”, International journal of mathematics and mathematical sciences, vol. 2019, Art. ID 8684742. https://doi.org/10.1155/2019/8684742

A. L. Prins, “A maximal subgroup 24+6:(A5 × 3) of G2(4) treated as a non-split extension Ḡ = 26· (24:(A5 × 3))”, Advances in group theory and applications, vol. 10, pp. 43-66, 2020. https://doi.org/10.32037/agta-2020-009

A. L. Prins, “On the projective character tables of the maximal subgroups of M11, M12 and Aut(M12)”, Advances in group theory and applications, in press.

A. L. Prins, R. L. Monaledi and R. L. Fray, “On a maximal subgroup (29:L3(4)):3 of the automorphism group U6(2):3 of U6(2)”, Afrika matematika, vol. 31, pp. 1311-1336, 2020. https://doi.org/10.1007/s13370-020-00798-x

T. T. Seretlo, “Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups O+10(2), HS and Ly”, PhD Thesis, University of KwaZulu Natal, School of Mathematical Sciences, Pietermaritzburg , South Africa, 2011. [Online]. Available: https://bit.ly/3xZKl8K

G. Robinson, “The number of irreducible projective characters with associated factor set of any finite group”, MathOverflow, 05-May-2014 [Online]. Available: https://bit.ly/3kIERvi

J. Schmidt, “Projective characters with corresponding factor set”, MathOverflow, 13-Apr-2017 [Online]. Available: https://bit.ly/3y4Liwv

R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbot, ATLAS of Finite Group Representations – Version 3. [Online]. Available: http://brauer.maths.qmul.ac.uk/Atlas/v3/


2021-04-19 — Updated on 2021-07-26


How to Cite

A. L. Prins, “On a two-fold cover 2.(2⁶˙G₂(2)) of a maximal subgroup of Rudvalis group Ru”, Proyecciones (Antofagasta, On line), vol. 40, no. 4, pp. 1011-1029, Jul. 2021.