On the cohomological equation of a linear contraction

Authors

  • Régis Leclercq Université Polytechnique Hauts-de-France.
  • Abdellatif Zeggar Université Polytechnique Hauts-de-France.

DOI:

https://doi.org/10.22199/issn.0717-6279-4559

Keywords:

fréchet space, cohomological equation

Abstract

In this paper, we study the discrete cohomological equation of a contracting linear automorphism A of the Euclidean space Rd. More precisely, if δ is the cobord operator defined on the Fréchet space E = Cl (Rd) (0 ≤ l ≤ ∞) by: δ(h) = h − h ◦ A, we show that:

  • If E = C0(Rd), the range δ (E) of δ has infinite codimension and its closure is the hyperplane E0 consisting of the elements of E vanishing at 0. Consequently, H1 (A, E) is infinite dimensional non Hausdorff topological vector space and then the automorphism A is not cohomologically C0-stable.
  • If E = Cl (Rd), with 1 ≤ l ≤ ∞, the space δ (E) coincides with the closed hyperplane E0. Consequently, the cohomology space H1 (A, E) is of dimension 1 and the automorphism A is cohomologically Cl-stable.

Downloads

Download data is not yet available.

Author Biographies

  • Régis Leclercq, Université Polytechnique Hauts-de-France.

    Laboratoire CERAMATHS, INSA Hauts-de-France.

  • Abdellatif Zeggar, Université Polytechnique Hauts-de-France.

    Laboratoire CERAMATHS, INSA Hauts-de-France.

References

D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Mathematics of the USSR-Izvestiya, vol. 7, no. 6, pp. 1257-1271, 1973. https://doi.org/10.1070/im1973v007n06abeh002086

A. Avila and A. Kocsard, “Cohomological equations and invariant distributions for minimal circle diffeomorphisms”, Duke Mathematical Journal, vol. 158, no. 3, 2011. https://doi.org/10.1215 / 00127094-1345662

A. Dehghan-Nezhad and A. El Kacimi Alaoui, “Équations cohomologiques de flots riemanniens et de difféomorphismes d’Anosov”, Journal of the Mathematical Society of Japan, vol. 59, no. 4, pp. 1105-1134, 2007. https://doi.org/10.2969/jmsj/05941105

A. El Kacimi Alaoui, “The ∂ operator along the leaves and Guichard’s theorem for a complex simple foliation”, Mathematische Annalen, vol. 347, no. 4, pp. 885-897, 2010. https://doi.org/10.1007/s00208-009-0459-9

A. El Kacimi Alaoui, “Quelques questions sur la chomologie des groupes discrets valeurs dans un Fréchet”. Preprint, 2020.

A. Guichardet, Cohomologie des groupes topologiques et des algbres de Lie. CEDIC, 1980.

A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory. In: Proceedings of Symposia in Pure Mathematics, vol. 69, 2001. https://doi.org/10.1090/pspum/069

S. Marmi, P. Moussa and J.-C. Yoccoz, “The cohomological equation for roth-type interval exchange maps”, Journal of the American Mathematical Society, vol. 18, no. 4, pp. 823-872, 2005. https://doi.org/10.1090/s0894-0347-05-00490-x

W. Rudin, Analyse fonctionnelle. Ediscience, 2000.

Downloads

Published

2022-09-13

Issue

Section

Artículos

How to Cite

[1]
“On the cohomological equation of a linear contraction”, Proyecciones (Antofagasta, On line), vol. 41, no. 5, pp. 1075–1091, Sep. 2022, doi: 10.22199/issn.0717-6279-4559.