New types of locally connected spaces via clopen set




λco-connected spaces, ; λco-components, λco-locally connected spaces


In this paper, we define and study a new type of connected spaces called λco-connected space. It is remarkable that the class of λ-connected spaces is a subclass of the class of λco-connected spaces. We discuss some characterizations and properties of λco-connected spaces, λco components and λco-locally connected spaces.

Author Biographies

Ennis Rafael Rosas Rodriguez, Universidad de la Costa.

Depto. de Ciencias Naturales y Exactas.

Sarhad Namiq, University of Garmian.

Dept. of Mathematics.


C. Dorsett, “Semi-connectedness”, Indian journal of mechanic mathematics, vol. 17, no. 1, pp. 57-63, 1979.

A. B. Khalaf and S. F. Namiq, “λ-open sets and λ-separation axioms in topological spaces”, Journal of advanced studies in topology, vol. 4, no. 1, pp. 150-158, 2013.

N. Levine, “Semi-open sets and semi-continuity in topological spaces”, The american mathematical monthly, vol. 70, no. 1, pp. 36-41, 1963, doi: 10.1080/00029890.1963.11990039

S. F. Namiq, "New types of continuity and separation axiom based operation in topological spaces", MSc Thesis, University of Sulaimani, 2011.

S. F. Namiq, “λco-open sets and topological properties”, Submit.

S. F. Namiq, “λ-connected spaces via λ-open sets”, Journal of Garmian University, vol. 7, pp. 165-178, 2015.

S. F. Namiq, “λsc-open sets and topological properties”, Journal of Garmian University, 2014. [On line]. Available:

M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Transactions of the American Mathematical Society, vol. 41, no. 3, pp. 375–375, Mar. 1937, doi: 10.1090/S0002-9947-1937-1501905-7



How to Cite

E. R. Rosas Rodriguez and S. Namiq, “New types of locally connected spaces via clopen set”, Proyecciones (Antofagasta, On line), vol. 40, no. 3, pp. 671-679, Apr. 2021.




Most read articles by the same author(s)