Another example of the mutual singularity of multifractal measures

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2021-01-0002

Keywords:

Multifractal analysis, Homogeneous Moran fractals, Homogeneous Moran Measures

Abstract

We propose an example for which the multifractal Hausdorff and packing measures are mutually singular.

Author Biographies

Zied Douzi, University of Monastir.

Dept. of Mathematics, Analysis, Probability and Fractals Laboratory LR18ES17.

Amal Samti, University of Monastir.

Dept. of Mathematics, Analysis, Probability and Fractals Laboratory LR18ES17.

Bilel Selmi, University of Monastir.

 Dept. of Mathematics, Analysis, Probability and Fractals Laboratory LR18ES17.

References

N. Attia and B. Selmi, “Regularities of multifractal Hewitt-Stromberg measures”, Communication Korean Mathematical Society, vol. 34, no. 1., pp. 213-230, Jan. 2019, doi: 10.4134/CKMS.c180030

N. Attia and B. Selmi, “A multifractal formalism for Hewitt-Stromberg measures”, Journal of geometric analysis, Oct., 2019, doi: 10.1007/s12220-019-00302-3

F. Ben Nasr, I. Bhouri and Y. Heurteaux, “The validity of the multifractal formalism: results and examples”, Advances in mathematics, vol. 165, no. 2, pp. 264-284, Feb. 2002, doi: 10.1006/aima.2001.2025

M. Das, “Pointwise Local Dimensions”, Ph.D. Thesis, The Ohio State University, USA, 1996.

M. Das, “Hausdorff measures, dimensions and mutual singularity”, Transactions of the American Mathematical Society, vol. 357, no. 11, pp. 4249-4268, Nov. 2005. doi: 10.1090/S0002-9947-05-04031-6

Z. Douzi and B. Selmi, “On the mutual singularity of multifractal measures”, Electronical research archives, vol. 28, no. 1, pp. 423-432, Mar. 2020, doi: 10.3934/era.2020024

K. J. Falconer, Techniques in fractal geometry, New York, NY: Wiley, 1997.

T. C. Halsey, M. H. Jensen, L. P. Kadanof, I. Procaccia, and B. J. Shraiman, “Fractal measures and their singularities: the characterization of strange sets”, Physics Revision A., vol. 33, pp. 1141-1151, Feb. 1986, doi: 10.1103/PhysRevA.33.1141

L. Olsen, “A multifractal formalism”, Advances in mathematics, vol. 116, no.1, pp. 82-196, Nov. 1995, doi: 10.1006/aima.1995.1066

L. Olsen, “Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures”, Mathematica scandinavica, vol. 86, no.1, pp. 109-129, 2000, doi: 10.7146/math.scand.a-14284

Y. Pesin, Dimension theory in dynamical systems, Contemporary views and applications, Chicago, IL: University of Chicago Press, 1997.

J. Peyrière, “Multifractal measures,” in Probabilistic and Stochastic Methods in Analysis, with Applications, J. S. Byrnes, J. L. Byrnes, K. A. Hargreaves, and K. Berry, Eds. Dordrecht: Springer, 1992, pp. 175–186.

M. Wu, “The multifractal spectrum of some Moran measures”, Science in China Series A: Mathematics volume, vol. 48, pp. 1097-1112, Aug. 2005, doi: 10.1360/022004-10

Published

2021-01-06

How to Cite

[1]
Z. Douzi, A. Samti, and B. Selmi, “Another example of the mutual singularity of multifractal measures”, Proyecciones (Antofagasta, On line), vol. 40, no. 1, pp. 17-33, Jan. 2021.

Issue

Section

Artículos