Inverse eigenproblems for real symmetric doubly arrowhead matrices

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2020-05-0080

Keywords:

Real Symmetric matrices, Doubly arrowhead matrices, Inverse eigenvalue problem

Abstract

We consider two inverse eigenproblems for a real symmetric doubly arrowhead matrix An(q) , which consist of constructing An(q) from two special kinds of spectra information. These problems were introduced in [11], where the principal results are sufficient conditions for both problems to have a real solution. In this paper, we improve such conditions, in the sense that one of the given conditions implies the rest. The results are constructive and generate one numerical procedure to construct the solution matrix An(q).

Author Biographies

Hubert Rohner Pickmann Soto, Universidad de Tarapacá.

Dept. de Matemática.

Susana Arela Pérez, Universidad de Tarapacá.

Depto. de Matemática.

Juan Carlos Egaña Arancibia, Universidad Católica del Norte.

Depto. de Matemáticas.

Dante Carrasco Olivera, Universidad del Bío-Bío.

Departamento de Matem´aticas, Grupo de Investigaci´on en Sistemas Din´amicos y Aplicaciones (GISDA).

References

D. Boley and G. H. Golub, “A survey of matrix inverse eigenvalue problems”, Inverse problems, vol. 3, no. 4, pp. 595–622, 1987, doi: 10.1088/0266-5611/3/4/010

M. T. Chu and G. H. Golub, Inverse eigenvalue problems: theory, algorithms, and applications. Oxford: Oxford University Press, 2005, doi: 10.1093/acprof:oso/9780198566649.001.0001

G. M. Gladwell, Inverse problems in vibratio, Dordrecht: Springer, 1986.

V. Higgins and C. Johnson, “Inverse spectral problems for collections of leading principal submatrices of tridiagonal matrices”, Linear algebra and its applications, vol. 489, pp. 104-122, Jan. 2016, doi: 10.1016/j.laa.2015.10.004

H. Hochstadt, “On the construction of a Jacobi matrix from mixed given data”, Linear Algebra and its Applications, vol. 28, pp. 113-115, Dec. 1979, doi: 10.1016/0024-3795(79)90124-1

D. Inman, Vibration with control, measurement and stability. Englewood Cliffs, NJ: Prentice-Hall, 1989.

N. Jakov?evic Stor, I. Slapni?ar, and J. Barlow, “Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications”, Linear algebra and its applications, vol. 464, pp. 62-89, Jan. 2015, doi: 10.1016/j.laa.2013.10.007

A. M. Nazari and Z. Beiranvand, “The inverse eigenvalue problem for symmetric quasi anti-bidiagonal matrices”, Applied mathematics and computation, vol. 217, no. 23, pp. 9526-9531, Aug. 2011, doi: 10.1016/j.amc.2011.03.031

J. Peng, X. Y. Hu, and L. Zhang, “Two inverse eigenvalue problems for a special kind of matrices”, Linear algebra and its applications, vol. 416, no. 2-3, pp. 336-347, Jul. 2006, doi: 10.1016/j.laa.2005.11.017

H. Pickmann, J. Egaña, and R. L. Soto. “Extremal inverse eigenvalue problem for bordered diagonal matrices”, Linear algebra and its applications, vol. 427, no. 2-3, pp. 256-271, Dec. 2007, doi: 10.1016/j.laa.2007.07.020

H. Pickmann, J. Egaña, and R. L. Soto, “Two inverse eigenproblems for symmetric doubly arrow matrices”, Electronic journal of linear algebra, vol. 18, pp. 700-718, Jan. 2009, doi: 10.13001/1081-3810.1339

H. Pickmann, J. Egaña, and R. L. Soto, “Extreme spectra realization by real symmetric tridiagonal and real symmetric arrow matrices”, Electronic journal of linear algebra, vol. 22, pp. 780-795, Jan. 2011, doi: 10.13001/1081-3810.1474

H. R. Pickmann, S. Arela, J. Egaña Arancibia, and D. Carrasco, “On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices”, Proyecciones (Antofagasta, On line), vol. 38, no. 4, pp. 811-828, Oct. 2019, doi: 10.22199/issn.0717-6279-2019-04-0053

Published

2020-10-01

How to Cite

[1]
H. R. Pickmann Soto, S. Arela Pérez, J. C. Egaña Arancibia, and D. Carrasco Olivera, “Inverse eigenproblems for real symmetric doubly arrowhead matrices”, Proyecciones (Antofagasta, On line), vol. 39, no. 5, pp. 1315-1331, Oct. 2020.

Issue

Section

Artículos

Most read articles by the same author(s)