On generalizations of graded second submodules





Graded second submodules, Graded 2-absorbing submodules, Graded strongly 2-absorbing submodules, Graded 2-absorbing second submodules, Graded strongly 2-absorbing second submodules, Graded quasi 2-absorbing second submodules


Let G be a group with identity e, R be a commutative G-graded ring with unity 1 and M be a G-graded R-module. In this article, we introduce and study two generalizations of graded second submodules, namely, graded 2-absorbing second submodules and graded strongly 2- absorbing second submodules. Also, we introduce and study the concept of graded quasi 2-absorbing second submodules, that is a generalization for graded strongly 2-absorbing second submodules.

Author Biography

Rashid Abu-Dawwas, Yarmouk University.

Dept. of Mathematics.


R. Abu-Dawwas and K. Al-Zoubi, “On graded weakly classical prime submodules”, Iranian journal of mathematical sciences and informatics, vol. 12, no. 1, pp. 153-161, 2017, doi: 10.7508/ijmsi.2017.01.012

R. Abu-Dawwas, K. Al-Zoubi and M. Bataineh, “Prime submodules of graded modules”, Proyecciones (Antofagasta. On line), vol. 31, no. 4, pp. 355-361, Dec. 2012, doi: 10.4067/S0716-09172012000400004

R. Abu-Dawwas, M. Bataineh and A. Da’keek, “Graded weak comultiplication modules”, Hokkaido mathematical journal, vol. 48, no. 2, pp. 253-261, 2019, doi: 10.14492/HOKMJ/1562810507

K. Al-Zoubi and R. Abu-Dawwas, “On graded quasi-prime submodules”, Kyungpook mathematical journal, vol. 55, no. 2 pp. 259-266, 2015, doi: 10.5666/KMJ.2015.55.2.259

K. Al-Zoubi and R. Abu-Dawwas, “On graded 2-absorbing and weakly graded 2-absorbing submodules”, Journal of Mathematical Sciences: Advances and Applications, vol. 28, pp. 45-60, 2014. [On line]. Available: https://bit.ly/34KEQ1x

K. Al-Zoubi, R. Abu-Dawwas, and S. Ceken, “On graded 2-absorbing and graded weakly 2-absorbing ideals”, Hacettepe journal of mathematics and statistics, vol. 48, no. 3, pp. 724-731, 2019, doi: 10.15672/hjms.2018.543

K. Al-Zoubi and M. Al-Azaizeh, “Some properties of graded 2-absorbing and graded weakly 2-absorbing submodules”, Journal of nonlinear sciences and applications, vol. 12, no. 8, pp. 503-508, Mar. 2019, doi: 10.22436/jnsa.012.08.01

K. Al-Zoubi, M. Jaradat and R. Abu-Dawwas, “On graded classical prime and graded prime submodules”, Bulletin of the iranian mathematical society, vol. 41, no. 1, pp. 205-2013, 2015. [On line]. Available: https://bit.ly/383ka6O

H. Ansari-Toroghy and F. Farshadifar, “On graded second modules”, Tamkang journal of mathematics, vol. 43, no. 4, pp. 499-505, 2012, doi: 10.5556/j.tkjm.43.2012.1319

H. Ansari-Toroghy and F. Farshadifar, “Graded comultiplication modules”, Chiang mai journal of science, vol. 38, no. 3, pp. 311-320, Jul. 2011. [On line]. Available: https://bit.ly/34Oe48w

H. Ansari-Toroghy and F. Farshadifar, “Some generalizations of second submodules”, Palestine journal of mathematics, vol. 8, no. 2, pp. 159- 168, 2019. [On line]. Available: https://bit.ly/2JmQKGu

S. E. Atani, “On graded prime submodules”, Chiang mai journal of science, vol. 33, no. 1, pp. 3-7, 2006 [On line]. Available: https://bit.ly/2Jz1nGB

S. E. Atani and F. Farzalipour, “On graded secondary modules”, Turkish journal of mathematics, vol. 31, no. 4, 2007, pp. 371-378. [On line], Available: https://bit.ly/3jMSnd3

S. Çeken and M. Alkan, “On graded second and coprimary modules and graded second representations”, Bulletin of Malaysian Mathematical Society, vol. 38, no. 4, Oct. 2015, pp. 1317-1330, doi: 10.1007/s40840-014-0097-6

J. Chen and Y. Kim, “Graded irreducible modules are irreducible”, Communications in algebra, vol. 45, no. 5, pp. 1907-1913, Oct. 2017, doi: 10.1080/00927872.2016.1226864

F. Farzalipour and P. Ghiasvand, “On the union of graded prime submodules”, Thai journal of mathematics, vol. 9, no. 1, pp. 49-55, 2011. [On line]. Available: https://bit.ly/38423xD

F. Farzalipour and P. Ghiasvand, “On graded weak multiplication modules”, Tamkang journal of mathematics, vol. 43, no. 2, pp. 171-177, 2012, doi: 10.5556/j.tkjm.43.2012.712

L. Fuchs, W. Heinzer , and B. Olberding, “Commutative ideal theory without finiteness conditions: irreducibility in the quotient field,” in Abelian Groups, Rings, Modules, and Homological Algebra, P. Goeters and O. M. G. Jenda , Eds. Boca Raton, CA: Chapman and Hall/CRC, 2006, pp. 121–145.

C. Meng, “G-graded irreducibility and the index of reducibility”, Communications in algebra, vol. 48, no. 2, pp. 826–832, Oct. 2019. doi: 10.1080/00927872.2019.1662914

S. R. Naghani and H. F. Moghimi, “On graded 2-absorbing and graded weakly 2-absorbing ideals of a commutative ring”, Çankaya University Journal of Science and Engineering, vol. 13, no. 2, pp. 11-17, 2016, doi: 10.15672/hjms.2018.543

C. Na?sta?sescu and F. V. Oystaeyen, Methods of graded rings. Berlin: Springer, 2004, doi: 10.1007/b94904

M. Refai and K. Al-Zoubi, “On graded primary ideals”, Turkish journal of mathematics, vol. 28, no. 3, pp. 217-229, 2004. [On line]. Available: https://bit.ly/34QIO91

J. Zhang, “A ‘natural’ graded Hopf algebra and its graded Hopf-cyclic cohomology”, Journal of noncommutative geometry, vol. 6, no. 2, pp. 389- 405, 2012. [On line]. Available: https://bit.ly/3jQsTLW



How to Cite

M. . Refai and R. Abu-Dawwas, “On generalizations of graded second submodules”, Proyecciones (Antofagasta, On line), vol. 39, no. 6, pp. 1537-1554, Nov. 2020.