A system of nonlinear fractional BVPs with ϕ-Laplacian operators and nonlocal conditions

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2021-02-0027

Keywords:

Fixed points index, Positive solution, Fractional differential equation, Nonlocal boundary condition, ϕ-Laplacian

Abstract

This work investigates the existence of multiple positive solutions for a system of two nonlinear higher-order fractional differential equations with ϕ-Laplacian operators and nonlocal conditions. A degenerate nonlinearity which obeys some general growth conditions is considered. The singularities are dealt with by approximating the fixed point operator. New existence results are presented by using the fixed point index theory. Examples of applications illustrate the theoretical results.

Author Biographies

Bahia Temar, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi

Laboratoire “Théorie du Point Fixe et Applications”

Ouiza Saifi, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi

Laboratoire “Théorie du Point Fixe et Applications”.

Smail Djebali, Ecole Normale Supérieure Cheikh Mohamed El-Bachir El-Ibrahimi,

Laboratoire ”Théorie du Point Fixe et Applications”.

References

R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed point theory and applications. Cambridge: Cambridge University Press, 2009, doi: 10.1017/CBO9780511543005

C. Cordeanu, Integral equations and stability of feedback systems. New York, NY: Academic Press, 1973.

K. Deimling, Nonlinear Functional Analysis. Berlin: Springer, 1985, doi: 10.1007/978-3-662-00547-7

S. Djebali and O. Saifi, “Positive solutions for singular ϕ−Laplacian BVPs on the positive half-line”, Electronic journal of qualitative theory of differential equations, vol. 2009, Art ID. 56, 2009, doi: 10.14232/ejqtde.2009.1.56

S. Djebali and O. Saifi, “Multiple positive solutions for singular ϕ -Laplacian BVPs with derivative depending nonlinearity on R+”, Dynamic systems applications, vol. 21, no. 1, pp. 93-119, 2012.

X. Hao, H. Wang, L. Liu, and Y. Cui, “Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator”, Boundary value problems, vol. 2017, no. 1, pp. Art ID. 182, 2017, doi: 10.1186/s13661-017-0915-5

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006.

R. L. Magin, Fractional calculus in bioengineering. Redding, CT: Begell, 2006.

I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. San Diego, CA: Academic Press, 1999.

J. Sabatier, O. P. Agrawal, and J. A. Tenreiro Machado, Advances in fractional calculus: theoretical developments and applications in physics and engineering. Dordrecht: Springer, 2007.

S. G. Samko, O. I. Marichev, and A. A. Kilbas, Fractional integrals and derivatives: theory and applications. Yverdon: Gordon and Breach, 1993. [On line]. Available: https://bit.ly/3qbTvdq

J.F. Xu, and W. Dong, “Existence and uniqueness of positive solutions of a fractional boundary value problem with p-Laplacian operator”, Acta mathematica. Sinica (Chinese Series), vol. 59, no. 3, pp. 385-396, 2016. [On line]. Available: https://bit.ly/2Ptalbf

F. Yan, M. Zuo, and X. Hao, “Positive solution for a fractional singular boundary value problem with p-Laplacian operator,” Boundary value problems, vol. 2018, Art. ID. 51, 2018, doi: 10.1186/s13661-018-0972-4

G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics. Oxford: Oxford University Press, 2008.

Published

2021-03-04

How to Cite

[1]
B. Temar, O. Saifi, and S. Djebali, “A system of nonlinear fractional BVPs with ϕ-Laplacian operators and nonlocal conditions”, Proyecciones (Antofagasta, On line), vol. 40, no. 2, pp. 447-479, Mar. 2021.

Issue

Section

Artículos