On the maximal invariant set for the map X² - 2 restricted to intervals





Chaos, Tent maps, Maximal invariant, Unimodal maps, Quadratic maps


In this paper, we study the maximal invariant set of a quadratic family related to a class of unimodal maps. This family is very important and have direct application in many branches of science. In particular, we characterize when the maximal invariant of f(x) = x2 − 2 (restricted to an interval) has a chaotic behavior.

Author Biographies

Dušan Bednařík, University of Hradec Králové

Faculty of Sciences.

Diego Marques, Universidade de Brasília

Departamento de Matemática.

Pavel Trojovský, University of Hradec Králové

Faculty of Sciences.


L. S. Block and W. A. Coppel, Dynamics in one dimension. Berlin: Springer, 1992, doi: 10.1007/BFb0084762

R. L. Kraft, “Chaos, cantor sets, and hyperbolicity for the logistic maps”, The american mathematical monthly, vol. 106, no. 5, pp. 400–408, 1999, doi: 10.1080/00029890.1999.12005062

S. Grossmann and S. Thomae, “Invariant distributions and stationary correlation functions of one-dimensional discrete processes”, Zeitschrift für naturforschung A, vol. 32, no. 12, pp. 1353–1363, 1977, doi: 10.1515/zna-1977-1204

A. Lasota and J. A. Yorke, “On the existence of invariant measures for piecewise monotonic transformations”, Transactions of the American Mathematical Society, vol. 186, pp. 481–488, 1973, doi: 10.1090/S0002-9947-1973-0335758-1

A. Lasota and M. M. Mackey, Chaos, fractals, and noise: stochastic aspects of dynamics. New York, NY: Springer, 1994, doi: 10.1007/978-1-4612-4286-4

W. de Melo and S. van Strien, One-dimensional dynamics. Berlin: Springer, 1993, doi: 10.1007/978-3-642-78043-1

R. M. da. Silva, C. Manchein, and M. W. Beims, “Controlling intermediate dynamics in a family of quadratic maps,” Chaos: an interdisciplinary journal of nonlinear science, vol. 27, no. 10, Art ID. 103101, 2017, doi: 10.1063/1.4985331

C. G. Moreira, “Maximal invariant sets for restrictions of tent and unimodal maps,” Qualitative theory of dynamical systems, vol. 2, no. 2, pp. 385–398, 2001, doi: 10.1007/BF02969348

S. V. Raković and M. Fiacchini, “Invariant approximations of the maximal invariant set or ‘Encircling the Square’”, IFAC proceedings volumes, vol. 41, no. 2, pp. 6377–6382, 2008, doi: 10.3182/20080706-5-KR-1001.01076



How to Cite

D. Bednařík, D. Marques, C. G. T. de A. . Moreira, and P. Trojovský, “On the maximal invariant set for the map X² - 2 restricted to intervals”, Proyecciones (Antofagasta, On line), vol. 40, no. 2, pp. 305-312, Feb. 2021.




Most read articles by the same author(s)