On the maximal invariant set for the map X² - 2 restricted to intervals

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2021-02-0018

Keywords:

Chaos, Tent maps, Maximal invariant, Unimodal maps, Quadratic maps

Abstract

In this paper, we study the maximal invariant set of a quadratic family related to a class of unimodal maps. This family is very important and have direct application in many branches of science. In particular, we characterize when the maximal invariant of f(x) = x2 − 2 (restricted to an interval) has a chaotic behavior.

Downloads

Download data is not yet available.

Author Biographies

  • Dušan Bednařík, University of Hradec Králové

    Faculty of Sciences.

  • Diego Marques, Universidade de Brasília

    Departamento de Matemática.

  • Pavel Trojovský, University of Hradec Králové

    Faculty of Sciences.

References

L. S. Block and W. A. Coppel, Dynamics in one dimension. Berlin: Springer, 1992, doi: 10.1007/BFb0084762

R. L. Kraft, “Chaos, cantor sets, and hyperbolicity for the logistic maps”, The american mathematical monthly, vol. 106, no. 5, pp. 400–408, 1999, doi: 10.1080/00029890.1999.12005062

S. Grossmann and S. Thomae, “Invariant distributions and stationary correlation functions of one-dimensional discrete processes”, Zeitschrift für naturforschung A, vol. 32, no. 12, pp. 1353–1363, 1977, doi: 10.1515/zna-1977-1204

A. Lasota and J. A. Yorke, “On the existence of invariant measures for piecewise monotonic transformations”, Transactions of the American Mathematical Society, vol. 186, pp. 481–488, 1973, doi: 10.1090/S0002-9947-1973-0335758-1

A. Lasota and M. M. Mackey, Chaos, fractals, and noise: stochastic aspects of dynamics. New York, NY: Springer, 1994, doi: 10.1007/978-1-4612-4286-4

W. de Melo and S. van Strien, One-dimensional dynamics. Berlin: Springer, 1993, doi: 10.1007/978-3-642-78043-1

R. M. da. Silva, C. Manchein, and M. W. Beims, “Controlling intermediate dynamics in a family of quadratic maps,” Chaos: an interdisciplinary journal of nonlinear science, vol. 27, no. 10, Art ID. 103101, 2017, doi: 10.1063/1.4985331

C. G. Moreira, “Maximal invariant sets for restrictions of tent and unimodal maps,” Qualitative theory of dynamical systems, vol. 2, no. 2, pp. 385–398, 2001, doi: 10.1007/BF02969348

S. V. Raković and M. Fiacchini, “Invariant approximations of the maximal invariant set or ‘Encircling the Square’”, IFAC proceedings volumes, vol. 41, no. 2, pp. 6377–6382, 2008, doi: 10.3182/20080706-5-KR-1001.01076

Downloads

Published

2021-02-16

Issue

Section

Artículos

How to Cite

[1]
“On the maximal invariant set for the map X² - 2 restricted to intervals”, Proyecciones (Antofagasta, On line), vol. 40, no. 2, pp. 305–312, Feb. 2021, doi: 10.22199/issn.0717-6279-2021-02-0018.