On the three families of extended Laguerrebased Apostoltype polynomials
DOI:
https://doi.org/10.22199/issn.071762792021020019Keywords:
GouldHopper polynomials, Laguerre type exponential, Unified Apostol type polynomials, Extended Laguerrebased Apostol type polynomials, Fubini polynomials, Bell polynomialsAbstract
In this paper, we introduce a new class of generalized extended Laguerrebased ApostoltypeBernoulli, ApostoltypeEuler and ApostoltypeGenocchi polynomials. These Apostol type polynomials are used to connect FubiniHermite and BellHermite polynomials and to find new representations. We derive some implicit summation formulae and symmetric identities for these families of special functions by applying the generating functions.
References
L. C. Andrews, Special functions for engineers and mathematicians. New York, NY: Macmillan, 1985.
E. T. Bell, “Exponential polynomials”, Annals of mathematical, vol. 35, no. 2, pp. 258277, 1934, doi: 10.2307/1968431
B. C. Berndt, Ramanujan's notebooks, vol. 1. New York, NY: Springer, 1985, doi: 10.1007/9781461210887
A. E. Bernarini, G. K. Dattoli, and P. A. Ricci, “Lexponentials and higher order Laguerre polynomials”, in Proceeding of the Fourth Annual Conference of the Society for Special Functions and their Applications, Jaipur (India), March 46, 2003.
K. N. Boyadzhiev, “A series transformation formula and related polynomials”, International journal mathematical sciences, vol. 2005, Art ID. 792107, 2005, doi: 10.1155/IJMMS.2005.3849
K. N. Boyadzhiev, “ApostolBernoulli functions, derivative polynomials and Eulerian polynomials”, Advances and applications in discrete mathematics, vol. 1, no. 2, pp. 109122, 2008. [On line]. Available: https://bit.ly/3rqe1Z7
G. Bretti, C. Cesarano, and P. Ricci, “Laguerretype exponentials and generalized Appell polynomials”, Computers & mathematics with applications, vol. 48, no. 56, pp. 833–839, 2004, doi: 10.1016/j.camwa.2003.09.031
Y. B. Cheikh, “Some results on quasimonomiality”, Applied mathematics and computation, vol. 141, no. 1, pp. 63–76, 2003, doi: 10.1016/s00963003(02)003211
C. Cesarano, B. Germano, and P. E. Ricci, “Laguerretype Bessel functions”, Integral transforms and special functions, vol. 16, no. 4, pp. 315–322, 2005, doi: 10.1080/10652460412331270629
G. Dattoli and P. E. Ricci, “Multiindex polynomials and applications to statistical problems”, Nuovo Cimento della Societa Italiana di Fisica B, vol. 118, no. 6, pp. 625633, 2003.
G. Dattoli, A. Arena, P. E. and Ricci, “Laguerrian eigenvalues problems and Wright functions”, Mathematical computer modeling, vol. 40, no. 78, pp. 877881, 2004, doi: 10.1016/j.mcm.2004.10.017
G. Dattoli, S. Lorenzutta, and C. Cesarano, “Finite sums and generalized forms of Bernoulli polynomials”, Rendiconti di mathematica, vol. 19, pp. 385391, 1999.
G. Dattoli, “HermiteBessel and LaguerreBessel functions: A byproduct of the monomiality principle,” in Proceeding. of the Workshop on Advanced Special Functions and Applications, Melfi (PZ) Italia 912 May 1999, 2006, pp. 147–164, doi: 10.4399/97888799926578
G. Dattoli and P. E. Ricci, “Laguerretype exponentials and the relevant Lcircular and Lhyperbolic functions”, Georgian mathematical journal, vol. 10, no. 3, 2003, pp. 481494, 2003, doi: 10.1515/GMJ.2003.481
H. W. Gould and A. T. Hopper, “Operational formulas connected with two generalizations of Hermite polynomials”, Duke mathematical journal, vol. 29, no. 1, 1962, pp. 5162, doi: 10.1215/S0012709462029071
B. Kurt, “A further generalization of Bernoulli polynomials and on the 2DBernoulli polynomials B2n (x, y) ”, Applied mathematical sciences, vol. 4, no. 47, pp. 23152322, 2010. [On line]. Available: https://bit.ly/36HyKPZ
M. A. Özarslan, “Hermitebased unified ApostolBernoulli, Euler and Genocchi polynomials”, Advances differential equations, vol. 2013, Art ID. 116, 2013, doi: 10.1186/168718472013116
M. A. Özarslan, “Unified ApostolBernoulli, Euler and Genocchi polynomials”, Computer mathematical applied, vol. 62, no. 1, pp. 24522462, 2011, doi: 10.1016/j.camwa.2011.07.031
H. Özden, “Unification of generating functions of the Bernoulli, Euler and Genocchi numbers and polynomials”, in ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010, vol. 1281, T. E. Simos, G. Psihoyios , and C. Tsitouras, Eds. 2010, doi: 10.1063/1.3497848
H. Özden, “Generating function of the unified representation of the Bernoulli, Euler and Genocchi polynomials of higher order”, in Numerical analysis and applied mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, vol. 1389, T. E. Simos, G. Psihoyios, C. Tsitouras, and Z. Anastassi, Eds. 2011, doi: 10.1063/1.3636736
H. Özden, Y. Simsek, and H. Srivastava, “A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials”, Computers & mathematics with applications, vol. 60, no. 10, pp. 2779–2787, 2010, doi: 10.1016/j.camwa.2010.09.031
M. A. Pathan and W. Khan, “Some implicit summation formulas and symmetric identities for the generalized HermiteBased polynomials”, Acta Universitatis Apulensis, vol. 39, pp. 113–136, 2014, doi: 10.17114/j.aua.2014.39.11
M. A. Pathan and W. A. Khan, “Some implicit summation formulas and symmetric identities for the generalized Hermite–Bernoulli polynomials”, Mediterranean journal of mathematics, vol. 12, no. 3, pp. 679–695, 2014, doi: 10.1007/s0000901404230
M. A. Pathan and W. A. Khan, “A new class of generalized polynomials associated with Hermite and Euler polynomials”, Mediterranean journal of mathematics, vol. 13, no. 3, pp. 913–928, 2015, doi: 10.1007/s0000901505511
M. A. Pathan, “A new class of generalized HermiteBernoulli polynomials”, Georgian mathematical journal, vol. 19, no. 3, pp. 559573, 2012, doi: 10.1515/gmj20120019
Y. Simsek, “Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications”, Fixed point theory and applications, vol. 2013, Art ID. 87, 2013, doi: 10.1186/16871812201387
Published
How to Cite
Issue
Section
Copyright (c) 2021 M. A. Pathan, Waseem A. Khan
This work is licensed under a Creative Commons Attribution 4.0 International License.

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.