New algebraic properties of middle Bol loops II
DOI:
https://doi.org/10.22199/issn.0717-6279-2021-01-0006Keywords:
Bol loops, Middle Bol loops, Moufang loopsAbstract
A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new methods of constructing a MBL by using a non-abelian group, the holomorph of a right Bol loop and a ring are described. Some equivalent necessary and sufficient conditions for a right (left) Bol loop to be a middle Bol loop are established. A RBL (MBL, LBL, MBL) is shown to be a MBL (RBL, MBL, LBL) if and only if it is a Moufang loop.
References
V. D. Belousov, Foundations of the theory of quasigroups and loops (Russian). Moskva: Nauka, 1967.
R. H. Bruck, A survey of binary systems. Berlin: Springer, 1966.
O. Chein, H. O. Pflugfelder, and J. D. H. Smith, Quasigroups and loops: theory and applications. Berlin: Heldermann, 1988.
J. Denes and A. D. Keedwell, Latin squares and their applications. London: The English University Press, 1974.
A. Drápal and V. A. Shcherbacov, “Identities and the group of isostrophisms”, Commentationes Mathematicae Universitatis Carolinae, vol. 53, no. 3, pp. 347-374, 2012. [On line]. Available: https://bit.ly/2JObrvE
E. G. Goodaire, E. Jespers, and C. P. Milies, Alternative loop rings, Amsterdam: North Holland, 1996.
I. Grecu and P. Syrbu, “On some isostrophy invariants of Bol loops”, Bulletin of the Transilvania University of Braşov – Series III Mathematics, Informatics, Physics, vol. 5, no. 54, pp. 145-154, 2012. [On line]. Available: https://bit.ly/3biiO9Z
I. Grecu and P. Syrbu, “Commutants of middle Bol loops”, Quasigroups and related systems, vol. 22, pp. 81-88, 2014. [On line]. Available: https://bit.ly/3ofP69g
A. Gwaramija, “On a class of loops” (Russian), Uchenye Zapiski Mosgospedinstituta im. Lenina, vol. 375, pp. 25-34, 1971.
T. G. Jaiyéolá, A study of new concepts in Smarandache quasigroups and loops. Ann Arbor, MI: ILQ, 2009.
T. G. Jaiyéolá, S. P. David, and Y. T. Oyebo, “New algebraic properties of middle Bol loops”, ROMAI journal (Online), vol. 11, no. 2, pp. 161-183, 2015. [On line]. Available: https://bit.ly/3biTLDJ
T. G. Jaiyéolá, S. P. David, E. Ilojide, and Y. T. Oyebo, “Holomorphic structure of middle Bol loops”, Khayyam journal of mathematics, vol. 3, no. 2, pp. 172-184, 2017, doi: 10.22034/kjm.2017.51111
E. Kuznetsov, “Gyrogroups and left gyrogroups as transversals of a special kind”, Algebraic and discrete mathematics, vol. 3, pp. 54-81, 2003. [On line]. Available: https://bit.ly/396OX1t
H. O. Pflugfelder, Quasigroups and loops: introduction. Berlin: Heldermann, 1990.
D. A. Robinson, “Bol loops”, Ph. D Thesis, University of Wisconsin-Madison, 1964.
J. D. H. Smith, An introduction to quasigroups and their representations. Boca Raton, FL: Chapman & Hall/CRC, 2007.
A. R. T. Solarin A. and B. L. Sharma, “On the construction of Bol loops”, Analele ştiinţifice ale Universităţii "Al.I. Cuza" din Iaşi. Matematică, vol. 27, no. 1, pp. 13-17, 1981.
P. Syrbu, “Loops with universal elasticity”, Quasigroups related systems. vol. 1, pp. 57-65, 1994. [On line]. Available: https://bit.ly/3bbb9dH
P. Syrbu, “On loops with universal elasticity”, Quasigroups related systems, vol. 3, pp. 41-54, 1996. [On line]. Available: https://bit.ly/38jT3nN
P. Syrbu, “On middle Bol loops”, ROMAI journal, vol. 6, no. 2, pp. 229-236, 2010. [On line]. Available: https://bit.ly/3pVGDsa
P. Syrbu and I. Grecu, “On some groups related to middle Bol loops”, Studia Universitatis Moldaviae: Ştiinţe Exacte şi Economice (Online), no. 7(67), pp. 10-18, 2013. [On line]. Available: https://bit.ly/35gbpUS
W. B. Vasantha Kandasamy, Smarandache loops. Rehoboth, NM: American Research Press, 2002.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Temitope Gbolahan Jaiyeola, S. P. David, O. O. Oyebola

This work is licensed under a Creative Commons Attribution 4.0 International License.