Strong Riesz summability of Fourier series

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2020-06-0096

Keywords:

Strong summability, Cesàro summability, [Ñ, pn(1),2]- summability, Fourier series

Abstract

The notion of strong summability was introduced by Fekete (Math. És Termesz Ertesitö, 34 (1916), 759-786). Dealing with Nörlund summability of Fourier series Mittal (J. Math. Anal. Appl. 314 (2006), 75-84) has established a result on strong summability. We have established a new result on sufficient condition for strong Riesz summability of Fourier series.

Author Biographies

Bidu Bhusan Jena, Veer Surendra Sai University of Technology.

Dept. of Mathematics.

Susanta Kumar Paikray, Veer Surendra Sai University of Technology.

Dept. of Mathematics.

Umakanta Misra, National Institute of Science and Technology.

Dept. of Mathematics.

References

A. A. Das, B. B. Jena, S.K. Paikray and R. K. Jati, “Statistical deferred weighted summability and associated Korovkin-type approximation theorem”, Nonlinear sciences letters A, vol. 9, no. 3, pp. 238-245, 2018.

M. Fekete, “Vizsagàlatok a Fourier-sorokol”, Mathematikai és Természettudományi Értesít?, vol. 34, pp. 759-786, 1916.

G. H. Hardy and J. E. Littlewood, “Sur la série de Fourier d’une fonction a carré sommable”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, vol. 156, pp. 1307-1309, 1913.

J. M. Hyslop, “Note on the strong summability of series”, Glasgow mathematical journal, vol. 1, no. 1, pp. 16-20, Jan. 1951, doi: 10.1017/S2040618500032883

B. B. Jena and S. K. Paikray, “Product of statistical probability convergence and its applications to Korovkin-type theorem”, Miskolc mathematical notes, vol. 20, no. 2, pp. 969-984, 2019, doi: 10.18514/MMN.2019.3014

B. B. Jena, S. K. Paikray, and H. Dutta, “On various new concepts of statistical convergence for sequences of random variables via deferred Cesàro mean”, Journal mathematical analysis and applications, vol. 487, no. 1, Art. ID 123950, Jul. 2020, doi: 10.1016/j.jmaa.2020.123950

B. B. Jena, Vandana, S. K. Paikray, and U. K. Misra, “On generalized local property of |A; ?|k-summability of factored Fourier series”, International journal of analysis and applications, vol. 16, no. 2, pp. 209-221, 2018. [On line]. Available: https://bit.ly/359BDsx

B. B. Jena, S. K. Paikray, and U. K. Misra, “A Tauberian theorem for double Cesàro summability method”, International journal of mathematics and sciences, Art. ID. 2431010, 2016, doi: 10.1155/2016/2431010

B. B. Jena, S. K. Paikray, and U. K. Misra, “Inclusion theorems on general convergence and statistical convergence of (L, 1, 1)-summability using generalized Tauberian conditions”, Tamsui Oxford journal of infinity mathematical sciences, vol. 31, no. 1, pp. 101-115, 2017. [On line]. Available: https://bit.ly/38nxTFQ

B. B. Jena, S. K. Paikray, and U. K. Misra, “Statistical deferred Cesàro summability and its applications to approximation theorems”, Filomat, vol. 32, no. 6, pp. 2307-2319, 2018, doi: 10.2298/FIL1806307J

B. B. Jena, L. N. Mishra, S. K. Paikray, and U. K. Misra, “Approximation of signals by general matrix summability with effects of Gibbs phenomenon”, Boletim Sociedade Paranaense de Matemática, vol. 38, no. 6, pp. 141-158, 2020, doi: 10.5269/bspm.v38i6.39280

M. L. Mittal, “A Tauberian theorem on strong Nörlund summability”, Journal of Indian Mathematical Society, vol. 44, pp. 369-377, 1980.

M. L. Mittal, “On strong Nörlund summability of Fourier series”, Journal of mathematical analysis applications, vol. 314, no. 1, pp. 75-84, Feb. 2006, doi: 10.1016/j.jmaa.2005.01.072

M. L. Mittal and R. Kumar, “A note on strong Nörlund summability”, Journal of mathematical analysis applications, vol. 199, no. 1, pp. 312-322, Apr. 1996, doi: 10.1006/jmaa.1996.0143

P. Parida, S. K. Paikray, H. Dutta, B. B. Jena, and M. Dash, “Tauberian theorems for Cesàro summability of nth sequences”, Filomat, vol. 32, no. 11, 2018, doi: 10.2298/FIL1811993P

T. Pradhan, S. K. Paikray, B. B. Jena, and H. Dutta, “Statistical deferred weighted B-summability and its applications to associated approximation theorems”, Journal of inequality and applied, vol. 2018, Art. ID: 65, Mar. 2018, doi: 10.1186/s13660-018-1650-x

H. M. Srivastava, B. B. Jena, S. K. Paikray, and U. K. Misra, “A certain class of weighted statistical convergence and associated Korovkin type approximation theorems for trigonometric functions”, Mathematical methods in the applied sciences, vol. 41, no. 2, pp. 671-683, Jan. 2018, doi: 10.1002/mma.4636

H. M. Srivastava, B. B. Jena, S. K. Paikray, and U. K. Misra, “Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 112, pp. 1487-1501, Oct. 2018, doi: 10.1007/s13398-017-0442-3

H. M. Srivastava, B. B. Jena, S. K. Paikray, and U. K. Misra, “Deferred weighted A-statistical convergence based upon the (p, q)-Lagrange polynomials and its applications to approximation theorems”, Journal of applied analysis, vol. 24, no. 1, pp. 1-16, May 2018, doi: 10.1515/jaa-2018-0001

S. K. Paikray, B. B. Jena, and U. K. Misra, “Statistical deferred Cesàro summability mean based on (p, q)-integers with application to approximation theorems,” in Advances in summability and approximation theory, S. A. Mohiuddine and T. Acar, Eds. Singapore: Springer, 2018, pp. 203–222, doi: 10.1007/978-981-13-3077-3_13

A. Zygmund, Trigonometric Series, 2nd ed., vol. 1. Cambridge: Cambridge University Press, 1959.

Published

2020-11-12

How to Cite

[1]
B. B. Jena, S. K. Paikray, and U. Misra, “Strong Riesz summability of Fourier series”, Proyecciones (Antofagasta, On line), vol. 39, no. 6, pp. 1615-1626, Nov. 2020.

Issue

Section

Artículos