Block diagonalization of systems with measurable coefficients


  • Raúl Naulin Universidad Católica de Valparaíso.



Diagonalization of linear systems, Systems with Carathéodory conditions


In this paper we show that, previous results given by Coppel concerning the existence of projection matrix P, and a change of variable x = S(t)y reducing system x = A(t)x, where A(t) is a continuous matrix function, to the form y= A(t)y, with the property P A(t) = A(t)P, can be extended to the case when A(t) is a locally integrable function.

Author Biography

Raúl Naulin, Universidad Católica de Valparaíso.

Instituto de Matemáticas.


[1] Agarwal, R.P., Difference Equations and lnequalities, Pure and Aplied Mathematics, Marcel Dekker, New York, 1992.

[2] Bainov, D.D., Simeonov, P.S., Systems with Impulse Effect, Ellis Horwood and John Wiley, New York, 1989

[3] Coddington E., Levinson N., Theory of Ordinary Differential Equations, McGraw Hill, New York, 1955.

[4] Cooke, K., Asymptotic theory for the delay differential equation, ul = -au(t-r(t)), J. Math. An. and App., Vol. 19, 1, pp. 160-173, 1967.

[5] Coppel W.A., Dichotomies and reducibility, Journal of differential equations 3. 500-.521, (1967).

[6] Coppel W.A., Dichotomies in Stability Theory, Lectures Notes in Mathematics, 629, Springer-Verlag, Berlin, 1978.

[7] Kreyszing E., Introductory Functional Analysis with Applications, John Wiley, New York, 1978.

[8] Lee E., Markus L., Foundations of Optimal Control Theory, John Wiley and Sons, New York, 1967.

[9] Naulin R., Dichotomies for systems with unbounded coefficients, IMA, UCV, Valparaíso, 1992 (Preprint).

[10] Naulin, R., Pinto, M., Block diagonalization of linear impulsive systems, Facultad de Ciencias, Universidad de Chile, 1 992(preprint).

[11] Palmer, K., Exponential dichotomies and transversal homoclinic points, J. Diff. Eqns., 55, pp. 22.5-256, 1984.

[12] Prodi G., Ambrosetti A., Analisi non Lineare, 1 Quaderno, Scuola Normale Superiore, Pisa, 1973.



How to Cite

R. Naulin, “Block diagonalization of systems with measurable coefficients”, Proyecciones (Antofagasta, On line), vol. 13, no. 1, pp. 01-07, Apr. 2018.