On the multiplicative inverse eigenvalue problem


  • Ricardo Lorenzo Soto Montero Universidad Católica del Norte.




eigenvalue, operator


An important inverse eigenvalue problem is the problem of finding a density q(x) such that the operator  , with the appropriate boundary conditions, possesses o prescribed spectrum, that is, the inverse vibrating string problem.

Author Biography

Ricardo Lorenzo Soto Montero, Universidad Católica del Norte.

Departamento de Matemáticas.


1. Biegler-Konig, F. W. Sufficient Conditions for the Solvability of Inverse Eigenvalue Problems. Linear Algebra and it Applications 40: 89-100, 1981.

2. De Oliveira, G. N. On the Multiplicative Inverse Eigenvalue Problem. Canadian Math. Bulletin 15: 189-193, 1972.

3. Dios da Silva, J.A. On the Multiplicative Inverse Eigenvalue Problem. Linear Algebra and its Applications 78: 133-145, 1986.

4. Downing, A. C. Jr. and Householder, A. S. Some Inverse Characteristic Value Problem. Journal Assoc. for Computing Machinery 3: 203-207, 1956.

5. Friedland, S. On Inverse Multiplicative Eigenvalue Problems for Matrices. Linear Algebra and its Applications 12: 127-137, 1975.

6. Hadeler, K. P. Multiplikative Inverse Eigenwertprobleme. Linear Algebra and i ts Appl. 2: 65-86, 1969.

7. Marcus, M. and Minc, H. A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston, 1964.

8. Soto, R. On Matrix Inverse Eigenvalue Problems. Ph.D. Dissertation. New Mexico State University, U.S.A., 1987.

9. Wilkinson, J. H. The algebraic Eigenvalue Problem. Oxford University Press, London, 1965.



How to Cite

R. L. Soto Montero, “On the multiplicative inverse eigenvalue problem”, Proyecciones (Antofagasta, On line), vol. 7, no. 15, pp. 1-20, Mar. 2018.




Most read articles by the same author(s)

1 2 > >>