Error analysis of a least squares pseudoderivative moving least squares method.
Keywords:
Pseudoderivatives, Moving least square methods and error estimatesAbstract
Meshfree methods offer the potential to relieve the scientist from the time consuming grid generation process especially in cases where localized mesh refinement is desired. Moving least squares (MLS) methods are considered such a meshfree technique. The pseudoderivative (PD) approach has been used in many papers to simplify the manipu lations involved in MLS schemes. In this paper, we provide theoretical error estimates for a least squares implementation of an MLS/PD method with a stabilization mechanism. Some beginning computations suggest this stabilization leads to good matrix conditioning.
References
[AD] M.G. Armentano and R.G. Duran, Error estimates for moving least square approximations, Appl. Num. Math., 37, pp. 297416, (2001).
[BKOFK] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, pp. 347, (1996).
[BRTV] P. Breitkopf, A. Rassineux, G. Touzot and R. Villon, Explicit form and eﬃcient computation of MLS shape functions and their derivatives, Int. J. Num. Meth. Eng., 48, pp. 451466, (2000).
[BS] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, SpringerVerlag, (1994).
[Cl] Jhules Clack, Error Estimates for MLS/PD Least Squares Methods, PhD Thesis, University of Cincinnati, (2014).
[FO] D. French and M. Osorio, Error estimates for a meshfree method with diﬀuse dervatives and penalty stabilization, Computational Mechanics, 50, pp. 657664, (2012).
[HM] W. Han and X. Meng, Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Math., 190, pp. 61576181, (2001).
[HBFR] A. Huerta, T. Belytschko, S. FernandezMendez and T. Rabczuk, Meshfree Methods (Chapter 10), Encyclopedia of Computational Mechanics (Ed. E. Stein), J. Wiley & Sons., (2004).
[HVV1] A. Huerta, Y. Vidal and P. Villon, Pseudodivergencefree element free Galerkin method for incompressible ﬂow, Comp. Meth. Appl. Math. Engrg., 193, pp. 11191136, (2004).
[KL] D. W. Kim and W.K. Liu, SIAM J. Num. Anal., 44, pp. 515539, (2006).
[KLYBL] D. W. Kim, W.K. Liu, Y.C. Yoon, T. Belytschko and S.H. Lee, Meshfree point collocation method with intrinsic enrichment for interface problems, Comput. Mech., 40, pp. 10371052, (2007).
[LY] S.H. Lee and Y.C. Yoon, Int. J. Num. Meth. Engrg., 61, pp. 2248, (2004).
[NTV] B. Nayroles, G. Touzot and P. Villon, Generalizing the ﬁnite element method: Diﬀuse approximation and diﬀuse elements, Comput. Mech., 10, pp. 307318, (1992).
[OF] M. Osorio and D.A. French, A Galerkin meshfree method with dif fuse derivatives and stabilization: Twodimensional case, Revista Ingenieria Y Ciencia (J. Engr. Sci.), 9, pp. 5376, (2013).
[O] M. Osorio, Error Estimates for a Meshfree Method with Diﬀuse Derivatives and Penalty Stabilization, PhD Thesis, University of Cincinnati, (2010).
[VVH2] Y. Vidal, P. Villon and A. Huerta, Locking in the incompress ible limit: pseudodivergencefree element free Galerkin, Comm. Num. Meth. Eng., 19, pp. 725735, (2003).
[YLB] Y.C. Yoon, S.H. Lee, and T. Belytschko, Enriched meshfree collocation method with diﬀuse derivatives for elastic fracture, Comp. Math. Appl., 51, pp. 13491366, (2006).
Published
How to Cite
Issue
Section

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.