The spectrum of the laplacian matrix of a balanced 2?-ary tree
DOI:
https://doi.org/10.4067/S0716-09172004000200006Keywords:
Tree, balanced tree, binary tree, n−ary tree, Laplacian matrix, árbol, árbol balanceado, árbol binario, árbol n-ario, matriz Laplaciana.Abstract

References
[1] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, Society for Industrial and Applied Mathematics, (1997).
[2] A. Cantoni and P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13, pp. 275-288, (1976).
[3] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23: pp. 298-305, (1973).
[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 2d. ed., Baltimore: Johns Hopkins University Press, (1989).
[5] R. Grone, R Merris and V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Ana. Appl. 11 (2), pp. 218-238, (1990).
[6] F. B. Hildebrand, Finite-Difference Equations and Simulations, Prentice-Hall,Inc., Englewood Cliffs, N.J., (1968).
[7] R. Merris, Laplacian Matrices of Graphs: A Survey, Linear Algebra Appl. 197, 198: pp. 143-176, (1994).
[8] J. J. Molitierno, M. Neumann and B. L. Shader, Tight bounds on the algebraic connectivity of a balanced binary tree, Electronic Journal of Linear Algebra, Vol. 6, pp. 62-71, March (2000).
[9] O. Rojo, The spectrum of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 349, pp. 203-219, (2002).
[10] O. Rojo and M. Peña, A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 362, pp. 293-300 (2003).
[2] A. Cantoni and P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13, pp. 275-288, (1976).
[3] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23: pp. 298-305, (1973).
[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 2d. ed., Baltimore: Johns Hopkins University Press, (1989).
[5] R. Grone, R Merris and V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Ana. Appl. 11 (2), pp. 218-238, (1990).
[6] F. B. Hildebrand, Finite-Difference Equations and Simulations, Prentice-Hall,Inc., Englewood Cliffs, N.J., (1968).
[7] R. Merris, Laplacian Matrices of Graphs: A Survey, Linear Algebra Appl. 197, 198: pp. 143-176, (1994).
[8] J. J. Molitierno, M. Neumann and B. L. Shader, Tight bounds on the algebraic connectivity of a balanced binary tree, Electronic Journal of Linear Algebra, Vol. 6, pp. 62-71, March (2000).
[9] O. Rojo, The spectrum of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 349, pp. 203-219, (2002).
[10] O. Rojo and M. Peña, A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree, Linear Algebra Appl. 362, pp. 293-300 (2003).
Published
2017-05-22
How to Cite
[1]
O. Rojo, “The spectrum of the laplacian matrix of a balanced 2?-ary tree”, Proyecciones (Antofagasta, On line), vol. 23, no. 2, pp. 131-149, May 2017.
Issue
Section
Artículos
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.